

150 F

OFFICE OF EMERGENCY AND REMEDIAL RESPONSE

Roy F. Weston, Inc. GSA Raritan Depot Bldg. 209 Annex (Bay F) 2890 Woodbridge Avenue Edison, New Jersey 08837-3679 732-321-4200 • Fax 732-494-4021

DATE:

30 April 1999

TO:

Harry Compton, U.S. EPA/ERTC Work Assignment Manager

THROUGH

Edward F. Gilardi, REAC Program Manager Um LHWHOM

FROM:

CC:

Jennifer A. Royce, REAC Task Leader Junniful. Royce

SUBJECT:

DOCUMENT TRANSMITTAL UNDER WORK ASSIGNMENT 3-367

Attached please find the following document prepared under this work assignment:

FINAL REPORT Naples Truck Stop Site Field Investigation

Central File - WA 3-367 (w/attachment)

Edward F. Gilardi, REAC Program Manager (w/o attachment)

FINAL REPORT
Naples Truck Stop Site
Field Investigation
Naples, Uintah County, UT
April 1999

U.S. EPA Work Assignment No.: 3-367 WESTON Work Order No.: 03347-143-001-3367-01 U.S. EPA Contract No.: 68-C4-0022

Prepared by:

Roy F. Weston, Inc.

Jennifer A. Royce

Task Leader

Edward F. Gilardi

REAC Program Manager

Date

Prepared for:

U.S. EPA/ERTC

Harry Compton

Work Assignment Manager

TABLE OF CONTENTS

LIST ()F TAB	LES	
LIST (F FIGU	RES	· · · · · · · · · · · · · · · · · · ·
1.0	INTR	ODUCTIO	ON
	1.1	Objecti	ve
	1.2	_	escription
	1.3		of Work
	•		
2.0	METI	HODS	· · · · · · · · · · · · · · · · · · ·
	2.1	Sampli	ng Locations
	2.2		mpling
3.0	RESU	LTS	,,,,,,,,,,,,,,,
• .	3.1	Soil Sa	mpling Results 3
		3.1.1	Target Analyte List Metals
		3.1.2	Volatile Organic Compounds
	-	3.1.3	Polychlorinated Biphenyls and Pesticides 3
		3.1.4	Herbicides
		3.1.5	Total Petroleum Hydrocarbons
		3.1.6	Agronomic Analysis
		3.1.7	Microbiology
4.0	DISCI	MOISSI	
4.0	DISC	OBBION :	······································
	4.1	Chemic	cal Analysis 5
		4.1.1	Inorganics
		4.1.2	Organics
	4.2	Agrono	omic Analysis
	4.3		piology Analysis
	4,3	WIICIOU	lology Allalysis
		4.3.1	Nitrogen Analysis
		4.3.2	Carbon Analysis
		4.3.3	Enzyme and Fungal Analysis
5.0	CON	CLUSION	S;
6.0	RECO	MMEND	ATIONS
7.0	LITE	RATURE	CITED

APPENDICES

Α	Final Analytical Results
В	Final Agronomic Results
C	Final Microbiology Results
D	Field Documentation

LIST OF TABLES

No.	Title
1	Number of Subsamples Per Location
2	TAL Metals Detected in Soil
3 ·	Volatile Organic Compounds Detected in Soil
4	Total Petroleum Hydrocarbons Detected in Soil
5	Agronomic Analysis
6	Results of Nitrogen Analysis
7	Results of Carbon Analysis
8	Results of Enzyme Analysis
9	Results of Fungal Analysis
10	Comparison of Metal Concentrations Detected in Soil
11	Comparison of Mean and Standard Deviation for Metal Concentrations Detected in REAC and U.S.G.S. Western U.S. Samples
12	Natural Resources Conservation Service Results for Soil Samples
13	Comparison of Elements Sufficient for Plant Growth with Soil Samples Collected at the Naples Truck Stop Site

LIST OF FIGURES

No.	Title
1	Site Map
2	Site Plan with Gasoline Plume Contours and Tree Planting Areas
3	Nutrient Availability to Plants Relative to pH

1.0 INTRODUCTION

1.1 Objective

The objective of this project was to assist the U.S. Environmental Protection Agency (U.S. EPA) Environmental Response Team Center (ERTC) with the evaluation of soil and associated phytoremediation activities using Siouxland poplar trees at the Naples Truck Stop site in Naples, Utah. Phytoremediation was selected to remove the residual volatile organic compound (VOC) contamination present at the site and to control the contaminant plume.

1.2 Site Description

The Naples Truck Stop is located on U.S. Highway 40 between 1500 Street South and 1700 Street South in a light industrial/commercial area of the Ashley Creek Valley (Figure 1). Groundwater flow is generally toward the southeast and groundwater elevations rise and fall significantly due to seepage from irrigated fields and canals (E & E 1994). An intermittent stream is located less than 250 feet (ft) south of the site which flows due east toward Ashley Creek, approximately 1.75 miles east of the site (E & E 1994).

In late 1993, gasoline triggered an alarm installed by Questar to monitor the integrity of their underground fuel storage tank. Questar is a trucking company located adjacent to the Naples Truck Stop. Integrity testing of Questar lines and underground storage tanks indicated that the tanks and lines were intact and it was concluded that gasoline contamination was from an off-site source. Testing surrounding properties confirmed a leak was present in one of the underground storage tank lines on the adjacent Naples Truck Stop property.

The US EPA Region VIII's Technical Assistance Team (TAT) defined the plume and installed monitoring wells. The U.S. Army Corps of Engineers was contracted to install an Enhanced Vapor Extraction System (EVES) to recover free product, groundwater, and soil gas. Since then, contaminant levels (primarily benzene, toluene, ethylbenzene, and xylenes [BTEX]) have plateaued and either increased/decreased erratically.

Phytoremediation is the use of vegetation for the *in-situ* treatment of contaminated soil, sediment, and groundwater and was seen as a way to remove the residual contamination and control the plume. The Response, Engineering, and Analytical Contract (REAC) was mobilized by the U.S. EPA to characterize the soil in areas prepared for phytoremediation activities.

1.3 Scope of Work

The project involved the collection and analysis of subsurface soil samples from six locations on-site and one location off-site. Subsurface samples were collected because this is the soil that would be in contact with the tree roots. The samples were submitted for a variety of chemical and agronomic analyses. The analytical data was used to evaluate potential adverse effects associated with site specific contaminants and to determine if soil characteristics were compatible with the growth requirements of the trees.

2.0 METHODS

2.1 Sampling Locations

The study area was divided into six on-site locations and one off-site reference location (Figure 2). Locations were as follows:

- Location 1 An area of approximately 2,350 square feet, situated outside of the plume.
- Location 2 An area approximately 11,300 square feet, situated inside the plume.
- Location 3 An area approximately 7,000 square feet, situated at the leading edge of the plume.
- Location 4 An area approximately 6,800 square feet situated at the leading edge of the plume.
- Location 5 An area approximately 4,200 square feet, situated outside of the plume.
- Location 6 Reference area located on 4000 St. S and 500 St. W.
- Location 7 Clean fill randomly collected throughout the planting areas.

2.2 Soil Sampling

During the week of October 26, 1998 the contractors hired to plant the trees dug a trench the length and width of each sampling area to a depth of 2 ½ feet. The contaminated soil was removed and replaced with clean soil. When REAC arrived on November 2, 1998 the Task Leader requested that the individuals preparing the holes for tree planting dig a limited number of holes through the fill layer and into the native soil material, prior to digging all the holes for the trees. This was to facilitate the collection of soil samples.

Except for the reference sample, each sample consisted of a composite of subsamples collected from several locations within each area. The number of subsamples was a function of the size of the area with one subsample collected for every two thousand square feet (Table 1). Three rows of holes were prepared for planting trees. The samples were collected from holes dug for the trees at a depth of approximately 4 feet and any clean soil that may have sloughed into the hole was removed to expose the native soil. All subsamples were collected from the middle row of holes and the holes were approximately equidistant from each other. So as to keep the sampling areas discrete, subsamples were not collected close to the isopleth boundaries.

Soil was collected per ERTC/REAC Standard Operating Procedure #2012, Soil Sampling, using an auger or a post-hole digger. Samples from Locations 1 and 2 were collected using an auger, homogenized in a 2 ½ gallon bucket and distributed into the appropriate sample containers. Samples from Locations 3, 4, and 5 were collected using a post-hole digger, were homogenized in a 2 ½ gallon bucket, and were distributed into the appropriate sample containers. The reference location (Location 6) consisted of one discrete sample collected using a post-hole digger. The clean soil sample (Location 7), which will be referred to as fill, was collected from twenty five subsample locations distributed uniformly throughout the planting areas.

3.0 RESULTS

The complete analytical results for chemical, agronomic, and microbiology analyses can be found in Appendices A, B, and C, respectively. Following is a discussion of these results.

3.1 Soil Sampling Results

3.1.1 Target Analyte List (TAL) Metals

The metals contributing most significantly to the total metal burden at all locations included aluminum, calcium, iron, magnesium, and potassium (Table 2). These metals are typically found in soil and were within normal ranges for the area (Boerngen and Shacklette 1981; Shacklette and Boerngen 1984). The concentrations of metals found on site were generally higher than the concentrations of metals found in the reference location (Location 6) and in the clean fill (Location 7). There were no trends noted in the metal concentrations.

3.1.2 Volatile Organic Compounds

Acetone and 2-butanone were detected in soil (Table 3). Acetone was detected in four of the locations ranging from 0.05 to 0.43 mg/kg and 2-butanone was detected in Location 4 at a concentration of 0.01 mg/kg. There were no VOCs detected in the reference location.

3.1.3 Polychlorinated Biphenyls and Pesticides

Polychlorinated biphenyls and pesticides were not detected in soil samples collected from the site.

3.1.4 Herbicides

Herbicides were not detected in soil samples collected from the site.

3.1.5 Total Petroleum Hydrocarbons

Total petroleum hydrocarbons (TPHs) were found in the sample collected from Location 1 at a concentration of 44 mg/kg (Table 4). A petroleum odor was detected during collection of one of the grabs from Location 2, however, no TPHs were detected in this sample.

3.1.6 Agronomic Analysis

The agronomic analyses consisted of many chemical and physical parameters. The chemical parameters included nitrogen compounds, available macronutrients, and available micronutrients, chloride, sulfate, pH, lime requirement, acidity, cation exchange capacity, soluble salts, and total organic carbon (Table 5). The physical parameters included water holding capacity, specific gravity, textural class, and grain size. No discernable trends were noted in the data.

3.1.7 Microbiology

The mean concentrations for NH_4 -N at day 0 and day 42 ranged from 0.195 to 0.73 µg NH_4 /g soil, and 0.11 to 2.19 µg NH_4 /g soil, respectively (Table 6). Initial concentrations (day 0) of NH_4 -N were relatively low at all locations. During laboratory incubations, the

net change in NH₄-N concentrations was relatively small. At Locations 1 and 7 there was a net decline in the NH₄-N concentrations and a net increase at all other locations.

The mean concentrations for NO_3 -N at day 0 and 42 ranged from 0.22 to 10.12 μ g NO_3 -N/g soil, and 1.66 to 12.17 μ g NO_3 -N/g soil, respectively. Nitrate concentrations varied considerably between locations and increased substantially after laboratory incubation of soils from Locations 3, 6, and 7.

The mean concentrations for dissolved organic nitrogen (DON) at day 0 and 42 ranged from 0.00 to $2.24~\mu g$ DON/g soil, and 0.00 to $0.02~\mu g$ DON/g soil, respectively. Dissolved organic nitrogen concentrations decreased at all locations except Location 4, where there was no DON detected.

The mean concentrations for microbial biomass nitrogen (MBN) at day 0 and 42 ranged from 0.00 to $20.05~\mu g$ MBN/g soil, and 0.89 to $26.61~\mu g$ MBN/g soil, respectively. Microbial biomass nitrogen concentrations increased or remained stable during laboratory incubation.

Dissolved organic carbon (DOC) concentrations at days 0 and 42 ranged from 79.35 to 170.25 μg DOC/g soil, and 90.15 to 216.53 μg DOC/g soil, respectively (Table 7). Dissolved organic carbon-concentrations did not change dramatically during soil incubation but at Locations 2 and 6 DOC decreased. Microbial biomass carbon (MBC) concentrations at day 0 and day 42 ranged from 6.69 to 361.24 μg MBC/g soil, and 214.33 to 821.58 μg MBC/g soil, respectively. Microbial biomass carbon increased at all locations. Soil respiration was determined by taking CO₂ measurements from incubating soils on a weekly basis. The mean concentrations for CO₂ ranged from 33.37 to 351.81 μg CO₂/g soil. The lowest concentrations were found at Location 1 and the highest concentrations were found at the reference location (Location 6).

Uptake of carbon and nitrogen by microorganisms varied among sites. In Locations 1, 2, 3 and 6, both carbon and nitrogen concentrations in microbial biomass increased greatly during soil incubation. However, in Locations 4, 5 and 7, MBC increased while MBN concentrations remained approximately the same or declined slightly. In uncontaminated systems, microbial growth is typically limited by carbon availability. These results suggest that microbial growth in Locations 1, 2, 3 and 6 was limited by the availability of carbon and nitrogen sources, while microorganisms in Locations 4, 5 and 7 lacked primarily carbon for growth.

Soil enzyme analyses were conducted to determine the activity of dehydrogenase and b-glucosidase enzymes in soil samples collected (Table 8). Dehydrogenase activity for day 0 and 42 ranged from 0.93 to 3.95 μ g triphenylformazan (TTF)/g soil and 1.67 to 8.54 μ g TTF/g soil, respectively. B-glucosidase activity for days 0 and 42 ranged from 0.33 to 24.50 μ g PNP/g soil and 4.44 to 52.64 μ g p-nitrophenyl (PNP)/g soil, respectively. Dehydrogenase activity increased in soil from all locations except Location 4, where dehydrogenase activity decreased slightly during laboratory incubation. Dehydrogenase activity after laboratory incubation was greatest in soil from the reference location (Location 6). Soil from the reference location (Location 6) had the greatest initial b-glucosidase activity, while the lowest initial enzyme activity was observed at Locations 3 and 4.

Active fungal length and biomass were determined in soil samples prior to incubation and at the end of a 42 day laboratory incubation (Table 9). Initially, only active fungi were

detected at the reference location (Location 6). After laboratory incubation, fungal growth and biomass were detected in soils from Locations 2, 5, 6, and 7. Active fungal growth and biomass were greatest at the reference location (Location 6).

4.0 DISCUSSION

4.1 Chemical Analysis

4.1.1 Inorganics

There were no discernable trends in the TAL metal concentrations in the soil samples. Efroymson et al. (1997) published soil benchmark concentrations at which plants are expected to exhibit adverse effects. Four metals (aluminum, boron, chromium and vanadium) exceeded the benchmark concentrations. The concentrations of TAL metals in the soil were also compared to studies done by the United States Geological Survey (USGS). In 1961 the USGS conducted a survey of surficial materials distributed across the United States to determine the range of element abundance (Shacklette and Boerngen 1984). This data was compared to the site TAL metal results and with the exception of calcium, all metals are lower than the average values for the western United States (Boerngen and Shacklette 1981) and Uintah county (Table 10) (Shacklette and Boerngen 1984). A mean and standard deviation were calculated for the soil results for the western U.S. and for the current investigation (Table 11). Except for calcium, the metal concentrations in the site samples tend to be lower than the USGS samples. Furthermore, metal concentrations in the reference location were not significantly different from levels recorded on-site. These results suggest that the concentrations of metals found in the soil samples are not at concentrations that would pose a threat to plants.

4.1.2 Organics

The VOC results indicate that no BTEX compounds were detected in the soil samples. Acetone and 2-butanone were the only VOCs detected and acetone is likely attributable to the decontamination procedure. There were no trends noted in the total petroleum hydrocarbon results. Total petroleum hydrocarbons were detected in Location 1 at a concentration of 44 mg/kg. Herbicides, pesticides and PCBs were not detected in any sample.

4.2 Agronomic Analysis

Essential elements strongly influence the growth of plants and are divided into groups called macronutrients and micronutrients. Macronutrients are chemical elements used in large quantities by plants and include nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur. If these elements are lacking, slowly available, or not in appropriate balance with other nutrients, plant growth may be retarded (Brady 1974). Micronutrients are also essential for plant growth but are used in very small amounts. Micronutrients include iron, manganese, copper, zinc, boron, molybdenum, chlorine, and cobalt. Micronutrients may substantially impact growth but are required in very small amounts. Micronutrients may substantially impact growth since the availability of these elements is low and they are found sparingly in the soil (Brady 1974). Further, micronutrients are even less available to plants in alkaline soils such as those found at the site (Brady 1974). The amount and availability of nutrients to plants is a complex process and is directly related to soil characteristics and the plant species of concern. Plants can become stressed or susceptible to disease if there is not a proper balance among the nutrients, or if the nutrients are not present in sufficient quantities, or in a form available to the plant. The agronomic results suggest that the nutrients may

not be in proper balance for the optimum growth of trees. For example, the concentrations of phosphorus and potassium were low relative to magnesium in all samples except the reference location and the fill sample. In addition, the calcium concentration ranged from medium to high in Locations 1 through 5 and were excessive in the reference location and the fill sample.

Soil pH significantly affects nutrient cycling and nutrient availability (Figure 3). The pH of soil from an arid region usually ranges from 7 to approximately 9. The site receives less than 20 inches of rain annually and is considered arid (Terry 1997). The soil pH of the site ranges from 8.0 to 8.4, indicating that these soils are slightly alkaline. The Natural Resources Conservation Service (NRCS) collected soil samples in the Naples Truck Stop area and the reference area (Table 12). The pH for the samples of this investigation fell within the range of pH listed in the NRCS report (NRCS 1999).

A number of relationships exist between pH and the availability and concentration of nutrients. For example, manganese and iron deficiencies can occur in over-limed sandy soils or alkaline arid region soils. Copper and zinc availability declines above a pH of 7. On the other hand, molybdenum availability increases as the pH is raised above 6. The leaching of calcium is negligible in arid regions, therefore calcium is likely to be present in abundance especially in the subsoil. Excess calcium may hinder phosphorus absorption and utilization of plants at pH values above 7 (Brady 1974). At a pH of 8 the ionic form of phosphorus available to plants is HPO₄-2. This particular ionic form of phosphorus is not as readily available to plants as some of the other ionic forms (Brady 1974). Based on this information, the high pH of the soil from the Naples Truck Stop may be limiting the availability of essential nutrients to plants. Therefore, the soil may need to be amended to lower the pH to a level optimal for plant growth.

Epstein (1965) lists the concentrations of elements sufficient for optimal plant growth. The concentration of nitrogen, potassium, magnesium, phosphorus, boron, manganese, zinc and copper in the soil samples from Naples Truck Stop were lower than Epstein's concentrations, and the concentrations of calcium and molybdenum were higher than Epstein's concentrations (Table 13.) Therefore the concentrations of elements in the Naples Truck Stop samples may not be in the range for optimal plant growth.

4.3 Microbiology Analysis

4.3.1 Nitrogen Analysis

Dissolved organic nitrogen may have contributed to microbial growth and accumulation of N in microbial biomass. Other sources of N for microbial growth were likely N from the mineral N pools, which may account for the small net changes in NH₄-N and NO₃-N concentrations during laboratory incubation. The nitrogen released from organic matter (NH₄-N) or converted to NO₃-N by ammonium oxidizers was quickly incorporated into microbial biomass. Mineral nitrogen concentrations were low throughout the study compared to the reference location (Location 6), which suggests that much of the available nitrogen was immobilized in microbial biomass.

4.3.2 Carbon Analysis

Dissolved organic carbon concentrations increased slightly after the 42 day incubation period for every location except Locations 2 and 6. The microbial biomass carbon concentrations increased in all soils after incubation, suggesting microbial growth and accumulation of carbon in microbial cells.

4.3.3 Enzyme and Fungal Analysis

Enzyme activity is determined by adding a substrate to soil, providing appropriate conditions for substrate hydrolysis and measuring the product of the reaction. Soil enzyme activity is expressed as the quantity of enzyme-cleaved product generated per gram of soil. Active bacterial cells contain dehydrogenase enzymes, which are involved in the oxidation of soil organic matter. Dehydrogenase activity increased in soil from all locations except Location 4, where it decreased slightly during laboratory incubation. The increase in dehydrogenase activity was likely due to bacterial growth under laboratory conditions, and suggests the potential for rapid bacterial growth in soils from these sites under optimal conditions.

The enzyme b-glucosidase is a component of most fungal cells, and provides information on the presence of enzymes capable of hydrolyzing glycosides (components of cellulose and lignin). Laboratory incubation of soils resulted in an increase in b-glucosidase activity in all samples, and enzyme activity was between 30-90% greater after laboratory incubation. The increase in b-glucosidase activity was likely due to fungal growth, and suggests that laboratory conditions were conducive to fungal proliferation in the soils. However, when the b-glucosidase and dehydrogenase activities in soil from the reference location (Location 6) are compared with soils from the other locations, it was noted that, after laboratory incubation, b-glucosidase activity in soil from the reference location (Location 6) was four to twelve times greater than b-glucosidase activity in soil from the other locations. Dehydrogenase activity in soil from the reference location (Location 6) was not more than five-fold greater than dehydrogenase activity in soil from other locations. These results seem to indicate that bacterial communities in soils from all locations are capable of more rapid recovery to perturbation than fungal communities.

Initially, active fungi were detected only at the reference location (Location 6). After incubation fungal growth was detected in Locations 2, 5, 6, and 7. The increase in active fungi in soils from Locations 2, 5, 6, and 7 suggests the potential for fungal growth and activity when temperature and moisture conditions are optimal.

5.0 CONCLUSIONS

- Only acetone and 2-butanone were detected in the volatile organic compound sample results. However, the acetone can be attributed to the decontamination procedures used to clean the sampling equipment.
- o Total petroleum hydrocarbons were detected at Location 1 at a low concentration. Therefore, no trends in TPH were discernable. A petroleum odor was detected during collection of one of the grabs from Location 2, however, no TPHs were detected in the sample.
- o Herbicides, pesticides, or polychlorinated biphenyl concentrations were not detected in any of the soil samples.
- o There were no discernable trends noted in the TAL metal results. Comparison with benchmark values suggests that the metals are not present at concentrations that would be toxic to plants.
- The results of the agronomic analyses suggest that available nutrients may not be present at concentrations optimal for plant growth.

The results of the microbiology analyses suggest that there are low nitrogen levels and impaired microbial biomass when compared to the reference location (Location 6).

6.0 RECOMMENDATIONS

- o The macronutrient and micronutrient balance should be adjusted for optimal plant growth.
- o The pH should be lowered by the addition of sulphur or other means to an optimum level for plants.
- o Nitrogen levels should be adjusted for optimal plant growth.

7.0 LITERATURE CITED

Boerngen, Josephine G. and Hansford T. Shacklette. 1981. "Chemical Analysis of Soils and Other Surficial Materials of the Conterminous United States." United States Department of the Interior Geological Survey. Open file report 81-197.

Brady, Nyle C. 1974. The Nature and Properties of Soils. 8th edition. New York, NY: MacMillan Publishing Co., Inc. 639 p.

Ecology and Environment, Inc. 1994. "Site Assessment Report Naples Gas Site." Prepared for United States Environmental Protection Agency under contract No. 68-WO-0037.

Efroymson, R. A., M. E. Will, G. W. Suter II, A. C. Wooten. 1997. "Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision." Prepared for the U. S. Department of Energy under contract No. DE-AC05-84OR21400.

Epstein, E. 1965. Plant Biochemistry. "Mineral metabolism." London: Academic Press. pp. 438-466.

Natural Resources Conservation Service. 1999. Personal Communication via fax. January 20, 1999.

Shacklette, Hansford T. and Josephine G. Boerngen. 1984. Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States. U.S. Geological Survey Professional Paper 1270. Washington, D.C.: United States Government Printing Office. 105 p.

Terry, R. 1997. "How soil pH affects availability on plant nutrients." May 16, 1997. Available at http://bioag.byu.edu/aghort/282pres/pH/sld003.htm

TABLE 1.

Number of Subsamples Per Location

Naples Truck Stop Site

Naples, UT

April 1999

Sampling Areas	Area (ft ²⁾	Number of Subsamples
1	2350	2
2	11300	6
3	7000	4
4	6800	4
5	4200	3

Note: Areas within sampling locations are approximated

TABLE 2. TAL Metals Detected in Soil Naples Truck Stop Site Naples, UT April 1999

(Results Reported in mg/kg)

	Location											
Metal	1	2	3	4	5	6	7					
Aluminum	5500	7700	5900	7600	8700	5200	4300					
Antimony	U 0.4	U 0.39	U 0.38	U 0.39	U 0.39	U 0.38	U 0.37					
Arsenic	5.1	5.3	5.6	5.1	5.3	3.1	3.7					
Barium	230	150	210	240	220	160	160					
Beryllium	0.37	0.51	0.4	0.47	0.49	0.4	0.31					
Boron	7.1	9.9	9.6	15	12	4.2	4.2					
Cadmium	U 0.4	U 0.39	U 0.38	0.39	U 0.39	0.43	U 0.37					
Calcium	57000	43000	92000	75000	61000	22000	25000					
Chromium	8	9.8	7.5	9.0	10	7.1	7.0					
Cobalt	3.1	4.2	4.3	3.1	3.9	3.2	3.5					
Copper	7.7	10	9.7	7.3	9. <u>5</u>	9.1	8.0					
Iron	7400	9400	7500	7900	8700	7100	7500					
Lead	/ 13	9.2	5.9	5.4	6.7	7.3	6.0					
Magnesium	5400	6400	7700	8400	6200	4200	4300					
Manganese	150	210	200	180	160	240	200					
Mercury	U 0.07	U 0.06	U 0.06	U 0.06	U 0.06	U 0.06	U 0.06					
Molybdenum	1	0.75	0.71	0.62	0.73	0.51	0.45					
Nickel	6.7	9.5	8.7	6.9	8.2	7.0	6.9					
Potassium	1200	2100	1300	1400	1700	1700	1000					
Selenium	U 0.4	U 0.39	U 0.38	U 0.39	U 0.39	U 0.38	U 0.37					
Silver	U 0.27	U 0.26	U 0.25	U 0.26	Ü 0.26	U 0.25	Ū 0.24					
Sodium	290	210	350	190	170	110	289					
Thallium	U 0.8	U 0.78	U 0.76	U 0.77	U 0.79	U 0.75	U 0.73					
Vanadium	20	20	20	21	22	13	13					
Zinc	27	30	23	23	28	30	25					
Total Metals	77000	69000	120000	100000	87000	41000	43000					

Volatile Organic Compounds Detected in Soil Naples Truck Stop Site Naples, UT April 1999

(Results reported in mg/kg)

	Location										
Compound	1	2	3	4	5	6	7				
Acetone	U 2.3	0.05	0.05	0.43	0.06	U 2.2	U 2.1				
2-Butanone	U 4.7	U 4.5	U 4.3	0.01	U 4.5	U 4.3	U 4.2				

TABLE 4.

Total Petroleum Hydrocarbons Detected in Soil
Naples Truck Stop Site
Naples, UT
April 1999

(Recorded in mg/kg)

Location	Total Petroleum Hydorcarbons
1	44
2	U 28
3	U 27
.4	U 28
5	U 28
- 6	U 27
7	U 27

Results of Agronomic Analysis Naples Truck Stop Site Naples, UT April 1999

Parameter	Location										
	1	2	3	4	5	6	7				
Total Kjeldahl Nitrogen (mg/kg)	200	200	200	200	200	400	200				
Ammonia-nitrogen (mg/kg)	13	2.9	2.6	1.8	2.1	2.3	1.5				
Nitrate-nitrogen (mg/kg)	5	16	1	13	13	2	3				
Nitrite-nitrogen (mg/kg)	0.01	<0.01	< 0.01	< 0.01	0.03	0.12	0.02				
	*						-				
Available Macronutrients	www.min.com	na ganaria e de Carendaria e de 1997 a Ano			a Carlo anno arrest de la companio de	and the second s					
Phosphorus (mg/kg)	9	22	7	8	11	85	14				
Potassium (mg/kg)	82	170	150	27	63	190	74				
Magnesium (mg/kg)	970	1000	1300	1100	1200	260	560				
Calcium (mg/kg)	15000	15000	15000	15000	15000	5500	15000				
					* * * * * * * * * * * * * * * * * * * *						
Available Micronutrients	and the second s										
Boron (mg/kg)	0.8	2.3	2	3	1.8	0.6	0.3				
Manganese (mg/kg)	6.7	25	5.4	5.6	2.5	77	25				
Copper (mg/kg)	0.38	1.0	0.46	0.26	0.34	1.1	0.49				
Zinc (mg/kg)	3.4	1.5	0.79	0.68	0.64	1.5	1.1				
		e den en e			2						
Chloride (mg/kg)	140	130	160	38	25	20	110				
Sulfate (mg/kg)	370	940	1100	800	420	15	99				
pH Hq	8	8	8.1	8.2	8.1	8.3	8.4				
Lime Requirement	0	0	0	Ò	. 0	0	0				
Acidity	0	Ő	0	0	0	0	0				
Cation Exchange Capacity (meq/100g)	23	24	26	24	25	18	20				
Soluble Salts (mmhos/cm)	0.58	0.93	1.2	0.97	0.65	0.21	0.36				
Total Organic Carbon (%)	2.3	1.7	3.2	2.6	2.3	1.3	1				
% Moisture	14	12	8.6	13	11	7.6	6.6				
			Recording	<u> </u>		A CONTRACTOR OF THE SECOND					
Water Holding Capacity @ 1/3 Bar (%)	15	16	17	16	17	8.9	7				
Water Holding Capacity @ 15 Bar (%)	8.3	8.2	9	8.3	8.9	4.1	3.5				
The state of the s	A Commence of the Commence of						<u> </u>				
Specific Gravity	2.6	2.4	2.4	2.5	2.6	2.6	2.6				
Textural Class	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam				
Grain Size		<u> </u>									
Percent Sand	68	52	52	60	58	60	76				
Percent Silt	12	44	44	36	36	26	12				
Percent Clay	20	4	4	4	6	14	12				

TABLE 6. Results of Nitrogen Analysis Naples Truck Stop Site Naples, UT April 1999

Location	Replicate	Incubation	NH4-N	NO ₃ -N	DON	MBN
		Time	(ug/g soil)	(ug/g soil)	(ug/g soil)	(ug/g soil)
		(d)				
1	1	0	0.55	2.60	2.17	0.00
1	2	0	0.89	2.61	2.30	0.00
Mean			0.72	2.605	2.24	0.00
1	1	42	0.20	3.16	0.00	3.97
1	2	42	0.33	2.56	0.00	3.98
Mean			0.27	2.86	0.00	3.965
2	1	0	0.63	10.01	1.47	0.00
2	2	0	0,83	10.23	0.27	0.00
Mean		· · · · · · · · · · · · · · · · · · ·	0.73	10.12	0.87	0.00
2	1	42	0.82	9.72	0.00	3.16
2	2	42	0.68	9.74	0.00	4.13
Mean			0.75	9.73	0.00	3.65
3	1	-0	0.43	0.44	1.04	0.37
3	2	0	0.21	0.00	1.75	0.00
Mean			0.32	0.22	1.40	0.185
3	1	42	0.66	1.59	0.00	1.44
3	2	42	0.70	1.72	0.00	0.33
Mean			0.68	1.66	0.00	0.885
4	1	0:	0.39	9.58	0.00	19.10
4	2	0	0.81	9.63	0.00	17.64
Mean			0.60	9.61	0.00	18.37
4	1	42	1.05	8.72	0.00	13.77
. 4	2	42	1.05	8.68	0.00	12.18
Mean			1.05	8.70	0.00	12.98
5	1	0	0.24	9.90	0.00	20.27
.5	2	0	0.50	10.10	0.68	19.82
Mean			0.37	10.00	0.34	20.05
5	1	42	1.05	9.68	0.00	16.12
5	2	42	0.52	10.20	0.04	14.64
Mean	 		0.79	9,94	0.02	15.38
6	1 1	0	0.80	0.97	1.18	4.90
6	2	0	0.25	0.00	1.88	2.39
Mean	 	40	0.53	0.49	1.53	3.65
6	1	42	1.79	20.83	0.00	23.40
6	2	42	2.59	3.50	0.00	29.81
Mean	1.		2.19	12.17	0.00	26.61
7	1 1	0	0.20	0.55	0.62	16.38
7	2 .	0	0.19	0.26	1.80	10.24
Mean	1	40	0.195	0.41	1.21	13.31
7	1	42	0.06	2.63	0.00	18.22
. 7	2	42	0.15	2.70	0.00	15.58
Mean			0.11	2.67	0.00	16.90

DON = Dissolved organic nitrogen
MBN = Microbial biomass nitrogen
Note: Location 6 is reference location
Note: Location 7 is fill sample

TABLE 7.
Results of Carbon Analysis
Naples Truck Stop Site
Naples, UT
April 1999

Location	Replicate	Incubation	DOC	MBC	Location	Replicate	licate CO ₂ -C production (ug/g soil)							
	-	Time	(ug/g soil)	(ug/g soil)			Day 7	Day 14	Day 21	Day 28	Day 35	Day 42	Total CO ₂ -C	Mean
		(d)										l	<u> </u>	total CO2-C
1	1	0	83.01	32.76	1	1	9.55	5.55	5.48	1.25	5.55	1.82	29.20	-
l	1 1	42	154.30	283.21	1	2	6.72	9.32	3.45	3,35	12.50	2.21	37.53	33.37
2	1	0	149.96	53.50	2	1	6.03	9.61	3.41	3.66	5.96	1.74	30.41	
2	1	42	145.59	214.33	2	2	5.49	7.73	3.86	2.10	19.83	1.73	40.74	35.58
3	1	0	95.02	20.38	3	1	7.57	11.01	4.72	4.70	2.73	1.95	32.68	
3	1	42	123.40	216.73	3	2	5.91	37.47	NA	2.70	17.78	0.84	64.70	48.69
4	î î	0	113.30	6.69	4	- 1	10.96	6.72	2.32	1.43	6.67	2.58	30.69	,
.4	1.	42	198.07	232.43	4	2	2.77	50.14	2.32	1.53	23.50	4.39	84.64	57.67
5	1	0	93.24	18.29	5	1	4.37	39.46	3.18	0.77	16.95	6.39	71.12	
5	1	42	216.53	416.93	5	2	7.57	47.34	4.17	2.11	15.38	1.91	78.46	74.79
6	1	0	170.25	361.24	6	1	43.64	123.4	36.86	32.44	94.78	60.43	391.54	
6	1	42	153.50	687.76	6	2	43.33	45.99	25.79	17.84	125.82	53.31	312.08	351.81
7	1	0	79.35	268.25	. 7	1	7.38	35.44	5.09	3.75	40.19	7.69	99.53	
7	1	42	90.15	821.58	7	2	3.23	33.62	4.26	3.06	63.10	2.85	110.12	104.83

DOC = Dissolved organic carbon
MBC = Microbial biomass carbon
Note: Location 6 is reference location
Note: Location 7 is fill sample

TABLE 8.
Results of Enzyme Analysis
Naples Truck Stop Site
Naples, UT
April 1999

Location	Replicate	Incubation Time	Dehydrogenase Activity (ug TTF/g soil)	B-glucosidase Activity (ug PNP/g soil)
1	1	0	0:94	3.06
11	1	42	1.67	13.66
. 2	1	0	3.95	4.11
2	1	42	5.90	5.93
3	1	0	2.92	0.33
3	1	42	6:41	4.44
4	1	0	2.36	0.55
4	4	42	2.15	4.62
5	1	0.	0.93	1.54
5	1	42	5.18	4.77
6	1	0	3.53	24.50
6	1	42	8:54	52.64
7	1	0	3.29	5.50
7	1	42	3,80	9.26

TABLE 9.
Results of Fungal Analysis
Naples Truck Stop Site
Naples, UT
April 1999

Location	Replicate	Incubation	Soil wt.	Soil dry wt.	Active Fungal	Active Fungal
	_	Time	(g)	(g)	Length	Biomass
		(d)			(cm/g soil)	(ug/g soil)
1	1	0	11.93	0.86	0.00	0.00
1	<u> </u>	42	12.46	0.76	0.00	0.00
2	1	0	11.91	0.89	0.00	0.00
2	1	42	13.93	0.74	37.64	0.48
3	1	0	12,89	0.92	0.00	0.00
3	·1	42	12.22	0.72	0.00	0.00
4	1	0	13.56	0.88	0.00	0.00
4	1	42	12.44	0.75	0.00	0.00
5	1	0	13.17	0.90	0,00	0.00
5	1	42	15.21	0.78	25.08	0.18
6	1	0	16:04	0.93	41.83	0.84
6	1	42	12.35	0.80	553.03	7.12
7	1	0:	15.06	0.94	0.00	0.00
7	11	42	12.35	0.80	17.44	0.13

TABLE 10. Comparison of Mean Metal Concentrations Detected in Soil Naples Truck Stop Site Naples, UT April 1999

USGS Western US 58,000 0.47 5.5	Naples Truck Stop Site Samples
58,000 0.47	Samples
0.47	
0.47	
	7,100
5.5	ND
	5.3
580	210
0.68	0.45
23	11
NA	0.08
18,000	66,000
41	8.9
7.1	3.7
21	8.8
21,000	8,200
17	8.0
7,400	6,800
380	180
0.046	ND
0.85	0.76
15	8.0
18,000	1,600
0.23	ND
NA	ND
9,700	240
NA	ND
INA	21
70	26

NA denotes the elements were not included in the list ND denotes compound not detected Note: All samples recorded in parts per million

TABLE 11.

Comparison of Mean and Standard Deviation for Metal Concentrations Detected in REAC and U.S.G.S. Western U.S. Samples Naples Truck Stop Site Naples, UT

Naples, UT April 1999

	U.S.	REAC			
Metal	Western U.S.		Samples		
	Mean	Standard	Mean	Standard	
		Deviation		Deviation	
Aluminum	58,000	20,000	7,100	1,400	
Antimony	0.47	2.2	ND .	ND	
Arsenic	5.5	2.0	5,3	0.2	
Barium	580	1.7	210	36	
Beryllium	0.68	2.3	0.45	0.06	
Boron	23	2.0	11	2.9	
Cadmium	NA	NA	0.08	0.17	
Calcium	18,000	31,000	66,000	19,000	
Chromium	41	2.2	8.9	1.2	
Cobalt	7.1	2.0	3.7	0.58	
Copper	21	2.1	8.8	1.2	
Iron	21,000	20,000	8,200	880	
Lead	17	1.8	8.0	3.1	
Magnesium	7,400	22,000	6,800	1,200	
Manganese	380	2.0	180	29	
Mercury	0.046	2.3	ND	ND	
Molybdenum	0.85	2.2	0.76	0.14	
Nickel	15	2.1	8.0	1.2	
Potassium	18,000	7100	1,600	370	
Selenium	0.23	2.4	ND	ND	
Silver	NA	NA	ND	ND	
Sodium	9,700	20,000	240	75	
Thallium	NA	NA	ND	ND	
Vanadium	70	2.0	21	0.81	
Zinc	55	1.8	26	3.4	

ND denotes not detected

NA denotes compounds not found in list

Note: All samples recorded in parts per million

TABLE 12. Natural Resources Conservation Service Results for Soil Samples Naples Truck Stop Site Naples, Utah April 1999

Map Symbol	Soil Series	Equivalent REAC	Depth of	Cation Exchange	Soil	Salinity
	Name	Sampling Area	Sample	Capacity	pН	
			(Inches)	(meq/100g)		(mmhos/cm)
162	Nolava	Naples Truck Stop	34 - 60	7.0 - 12.0	7.9 - 9.0	0 - 4
162	Nolava	Naples Truck Stop	46 - 65	8.0 - 12.0	7.9 - 9.0	0 - 4
163	Nolava	Reference Area	46 - 65	8.0 - 12.0	7.9 - 9.0	0 - 4
163	Nolava	Reference Area	46 - 65	8.0 - 12.0	7.9 - 9.0	0 - 4

Note: Multiple samples collected by the NRCS, 1999.

TABLE 13. Comparison of Elements Sufficient for Plant Growth with Soil Samples Collected at Naples Truck Stop Site Naples, Utah April 1999

Element	Epstein	Naples Truck Stop	
, 1	Concentration	Concentration	
	(mg/kg)	(mg/kg)	
Potassium	10,000	108	
Calcium	5,000	14,000	
Magnesium	2,000	910	
Phosphorus	2,000	21	
Boron	20	1.5	
Manganese	50	21	
Zinc	20	1.4	
Copper	6	0.58	
Molybdenum	0.1	0.76	

Note: Naples Truck Stop concentrations are means (n=7)

mg/kg denotes milligrams/kilogram

Source: Epstein, 1965.

HOW SOIL pH AFFECTS AVAILABILITY OF PLANT NUTRIENTS

U.S. ENVIRONMENTAL RESPONSE TEAM CENTER RESPONSE ENGINEERING AND ANALYTICAL CONTRACT 68-C4-0022 W.O. # 03347-143-001-3367-01

Obtained from: http://bioag.byu.edu/aghort/282pres/pH/sld003.htm

FIGURE 3
NUTRIENT AVAILABILITY TO
PLANTS RELATIVE TO pH
NAPLES TRUCK STOP SITE
NAPLES, UTAH
APRIL 1999

APPENDIX A
Final Analytical Results
Naples Truck Stop Site
Final Report
April 1999

Roy F. Weston, Inc. GSA Raritan Depot Bidg. 209 Annex (Bay F) 2890 Woodbridge Avenue Edison, New Jersey 08837-3679 732-321-4200 • Fax 732-494-4021

DATE:

23 December 1998

TO:

R. Singhvi

EPA/ERTC

FROM:

V. Kansal

Analytical Section Leader Vinal Kausal

SUBJECT:

DOCUMENT TRANSMITTAL UNDER WORK ASSIGNMENT # 3-367

Attached please find the following document prepared under this work assignment:

Naples Truck Stop - Analytical Report

Central File WA # 3-367

H. Compton

J. Royce

M. Barkley

(w/attachment)

Work Assignment Managers (w/attachment)

Task Leader (w/attachment)

Data Validation and Report Writing

Group Leader (w/o attachment)

1167 DEL AR 9812/NAPLESAR

ANALYTICAL REPORT

Prepared by Roy F. Weston, Inc.

Naples Truck Stop Naples, UT

December, 1998

EPA Work Assignment No. 3-367 WESTON Work Order No. 03347-143-001-3367-01 EPA Contract No. 68-C4-0022

> Submitted to H. Compton **EPA-ERTC**

J. Royce Task Leader Analytical Section Leader E. Gilardi

Analysis by:

REAC, Galson, Kemron

Prepared by: D. Laviska

Reviewed by: M. Barkley

Program Manager

Table of Contents

<u>Topic</u>		A STATE		rage IN	utiloci
Introduction		<i>j</i> .		Page	4
Case Narrative			•	Page	2
Summary of Abbreviations	•			Page	4
Summary of Addreviations					
	* *				
Control of the second			•		
Section I					
			<i>1</i>		
Analytical Procedure for VOC in Soil				Page	5
Analytical Procedure for Pesticide/PCB in Soil				Page	7
Analytical Procedure for Metals in Soil	•			Page	9
Analytical Procedure for Semivolatiles in Soil			-	Page	9
Analytical Procedure for Herbicides in Soil				Page	9
Analytical Procedure for TPH in Soil	٠,		4	Page	9
Results of the Analysis for VOC in Soil			Table 1.1	Page	10
Results of TIC for VOC in Soil			Table 1.2	Page	16
Results of the Analysis for Pesticide/PCB in Soil			Table 1.3	Page	27
Results of the Analysis for Metals in Soil			Table 1.4	Page	29
Results of the Analysis for Herbicides, Semivolatil	les, and TPH	in Soil	Table 1.5	Page	31
Results of the Amarysis for Tre-Colorest, Colorest				_	
				•	
		**************************************		-	
Section II			in the second se		
				1.	
QA/QC for VOC in Soil				Page	33
Results of the Internal Standard Areas and Surroga	te Percent R	ecoveries			
for VOC in Soil			Table 2.1	Page	34
Results of the MS/MSD Analysis for VOC in Soil	, ,		Table 2.2	Page	.36
QA/QC for Pesticide/PCB in Soil	•			Page	37
Results of the Surrogate Recoveries for Pesticide/I	PCB in Soil		Table 2.3	Page	38
Results of the MS/MSD Analysis for Pesticide/PC			Table 2.4	Page	39
QA/QC for Metals in Soil				Page	40
Results of the Matrix Spike Analysis for Metals in	Soil		Table 2.5	Page	41
Results of the LCS Analysis for Metals in Soil			Table 2.6	Page	42.
Results of the Duplicate Analysis for Metals in So	ül		Table 2.7	Page	43

Table of Contents (cont.)

<u>Topic</u>						
Results of the MS	ogate Recoveries for MSD Analysis for	for Herbicides and Herbicides, Semiv	Soil Semivolatiles in Soi volatiles, and TPH in Iles, and TPH in Soil	Soil Table 2.9	Page Page Page Page	44 45 48 49
	-	•				
Section III						
Chains of Custody Communications					Page Page	50 54
Appendix A Data for VOC (REAC) Appendix B Data for Pesticide/PCB (REAC) Appendix C Data for Metals (Galson) Appendix D Data for Semivolatiles, Herbicides, and TPH (Kemron)						(507001 (497001 (537001 (508001

Appendices will be furnished on request.

Introduction

REAC, in response to WA #3-367, provided analytical support for environmental samples collected from the Naples Truck Stop located in Naples, UT as described in the following table. The support also included QA/QC, data review, and preparation of an analytical report containing a summary of the analytical methods, the results, and the QA/QC results.

The samples were treated with procedures consistent with those described in SOP #1008.

Chain of Custody	Number of Samples Analyzed	Sampling Date	Date Received	Matrix	Analysis	Laboratory
3367-0004	8	11/02/98	11/04/98	Soil	Pesticide/PCB	REAC
3367-0005	8.				TAL Metals, Mo, B	Galson
3367-0006	9				VOC	REAC
3367-0007	7				TPH, Semivolatiles	Kemron
	8	.			Herbicides	

CASE NARRATIVE

Data Package H507 - VOC Analysis

In the initial calibration of 10/28/98, the percent relative standard deviation (%RSD) for naphthalene (44%) exceeded the acceptable QC limits. This compound was not detected in the associated samples; the data are not affected.

In the continuing calibration of 11/04/98 (am), the percent difference (%D) for acetone (27%) exceeded the acceptable QC limits. This compound was not detected in the associated samples; the data are not affected.

In the continuing calibration of 11/04/98 (pm), the percent difference (%D) for naphthalene (30%) exceeded the acceptable QC limits. This compound was not detected in the associated samples; the data are not affected.

Data Package H497 - Pesticide/PCB Analysis

Peak heights were used instead of compound concentrations to calculate the percent breakdown for the performance evaluation mixture (PEM) of 10/20/98. This PEM was within the acceptable QC criteria using peak heights.

In the continuing calibration of 11/06/98, the percent difference (%D) for endosulfan sulfate (27%) exceeded the acceptable QC limits. This compound was not detected in the associated samples; the data are not affected.

Data Package H537 - Metals Analysis

Lead (0.273 mg/kg) and zinc (1.855 mg/kg) were detected in the method blank. The results for these metals in the associated samples 3367-001, 3367-002, 3367-003, 3367-004, 3367-005, 3367-006, and 3367-007 are greater than five times the respective concentrations found in the method blank; these data are not affected. The results for these metals in the sample 3367-008 (Field Blank) are less than five times the respective concentrations found in the method blank and should be considered nondetected.

Aluminum (24.3 mg/kg), barium (0.37 mg/kg), calcium (37.1 mg/kg), chromium (0.27 mg/kg), copper (2.0 mg/kg), iron (94.4 mg/kg), lead (0.63 mg/kg), magnesium (10.6 mg/kg), manganese (2.3 mg/kg), and zinc (2.7 mg/kg) were detected in the field blank (sample 3367-008).

The recoveries of the matrix spike (26%) for antimony and the matrix spike (131%) for arsenic in the sample 3367-002 were outside the acceptable QC limits. The results for antimony in the associated samples 3367-001, 3367-002, 3367-003, 3367-004, 3367-005, 3367-006, 3367-007, and 3367-008 should be considered unusable. The results for arsenic in the same associated samples (excepting 3367-008) should be considered estimated. The result for arsenic in the sample 3367-008 is not affected.

1567/DEL/ARI9812/NAPLESAR

Data Package H508 - Herbicides, Semivolatiles, and TPH Analyses

The temperature of the sample cooler was 7 °C when it was received by the subcontracted laboratory.

The field blank sample (3367-008) was not analyzed for the semivolatile compounds (4-nitrophenol and pentachlorophenol), nor for the library search compounds (bentazon, chloramben, and 5-hydroxydicamba). None of these compounds was detected in the associated samples; the data are not affected.

In the analysis for herbicides, the matrix spike (3%) and matrix spike duplicate (4%) recoveries for dinoseb in the sample 3367-002 were outside the acceptable QC limits. Additionally, the LCS recovery (0%) for dinoseb was outside the acceptable QC limits. The results for dinoseb in all the associated samples (3367-001, 3367-002, 3367-003, 3367-004, 3367-005, 3367-006, 3367-007, and 3367-008) should be considered unusable.

In the analysis for semivolatiles, the recoveries of two base-neutral and one acid surrogates were outside the acceptable QC limits. The target compounds for this analysis are from the acid fraction; the data are not affected.

In the analysis for semivolatiles, the internal standard areas for acenaphthene-d10 and perylene-d12 were outside the acceptable QC limits for the sample 3367-007. The result for 4-nitrophenol in this sample should be considered estimated.

Summary of Abbreviations

AA Atomic Absorption

B The analyte was found in the blank

BFB Bromofluorobenzene

C Centigrade

D (Surrogate Table) this value is from a diluted sample and was not calculated

(Result Table) this result was obtained from a diluted sample

Dioxin denotes Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans and/or PCDD

and PCDF

CLP Contract Laboratory Protocol

COC Chain of Custody
CONC Concentration

CRDL Contract Required Detection Limit
CRQL Contract Required Quantitation Limit
DFTPP Decafluorotriphenylphosphine

DL Detection Limit

E The value is greater than the highest linear standard and is estimated

EMPC Estimated maximum possible concentration

ICAP Inductively Coupled Argon Plasma

ISTD Internal Standard

The value is below the method detection limit and is estimated

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

MDL Method Detection Limit
MI Matrix Interference
MS Matrix Spike

MSD Matrix Spike Duplicate
MW Molecular Weight

NA either Not Applicable or Not Available

NC Not Calculated
NR Not Requested
NS Not Spiked
% D Percent Difference
% REC Percent Recovery

PQL Practical Quantitation Limit
PPBV Parts per billion by volume

QL Quantitation Limit

RPD Relative Percent Difference
RSD Relative Standard Deviation

SIM Selected Ion Mode

TCLP Toxic Characteristics Leaching Procedure

U Denotes not detected

W Weathered analyte; the results should be regarded as estimated

 m^3 cubic meter kg kilogram μ g microgram L liter g gram pg picogram

mL milliliter mg milligram

microliter
denotes a value that exceeds the acceptable QC limit

Abbreviations that are specific to a particular table are explained in footnotes on that

table

Revision 07/09/98

Analytical Procedure for VOC in Soil

Analytical Procedure

A modified 524.2 method for the analysis of Volatile Organic Compounds in soil was used. Samples were purged, trapped, and desorbed to a GC/MS system. Prior to purging, the samples were spiked with a three component surrogate mixture consisting of toluene-d₈, 4-bromofluorobenzene and 1,2-dichloroethane-d₄, and a three component internal standard mixture consisting of bromochloromethane, 1,4-difluorobenzene, and chlorobenzene-d₅.

The purge and trap unit consisted of: A Tekmar concentrator (3000 Series) equipped with an autosampler (Dynatech) and a trap consisting of a VOCARB 4000 (Supelco), which itself contained of four adsorbent beds: Carbopack B (graphitized carbon 60/80 mesh), Carbopack C (graphitized carbon 60/80 mesh), Carboxen-1000 (60/80 mesh), and Carboxen-1001 (60/80 mesh).

The purge and trap instrument conditions were:

Purge
Dry Purge
Desorb Preheat
Desorb
Purge Flow Rate
Bake

10 min at 25 °C 2 min at 25 °C 230 °C 4 min at 230 °C

40 mL/min 8 min at 250 °C

A Hewlett Packard 5970 GC/MSD equipped with an RTE-A data system was used to analyze the data.

The instrument conditions were:

Column:

30 meter x 0.53mm ID, RTx-Volatiles

(Restek Corp.) column with 3.0 µm thickness.

Temperature:

5 min at 10 °C 6 °C/min to 140 °C 0.1 min at 140 °C 12 °C/min to 160 °C 5 min at 160 °C

Flow Rate

Helium at 10 mL/min

GC/MS Interface

Glass jet separator with 30 mL/min helium make-up gas at 250 °C.

Mass Spectrometer:

Electron Impact Ionization at a nominal electron energy of 70 electron

volts, scanning from 35-300 amu at one scan/sec.

Computer:

Preprogrammed to plot Extracted Ion Current Profile (EICP): Capable of integrating ions and plotting abundances vs time or scan number. A library search (NBS-Wiley) for tentatively identified compounds was

performed on samples.

The GC/MS system was calibrated using 6 VOC standards at 5, 20, 50, 100, 150, and 200 µg/L. Before analysis each day, the system was tuned with 50 ng BFB and passed a continuing calibration check when analyzing a 50 µg/L standard mixture in which the responses were evaluated by comparison to the average response of the calibration curve.

The results are listed in Table 1.1 and the Tentatively Identified Compounds are listed in Table 1.2. The concentrations of the analytes were calculated using the following equation:

$$C_{u} = \frac{DF \times A_{x} \times I_{is}}{A_{is} \times RF \text{ (or } RF_{ave}) \times W_{s} \times D}$$

where

 C_u = concentration of the target analyte ($\mu g/L$)

DF = Dilution Factor

A_x = Area of the target analyte
I_{is} = ng of specific internal standard
A_{is} = Area of the specific internal standard

RF = Response Factor

RF_{ave} = average Response Factor W_s = Weight of sample (g) D = Decimal percent solids

The average Response Factor is used when a sample is associated with an initial calibration curve. The Response Factor is used when a sample is associated with a continuing calibration curve.

Response Factor calculation:

The response factor (RF) for each specific analyte is quantitated based on the area response from the continuing calibration check as follows:

$$RF = \frac{A_c \times I_{is}}{A_{is} \times I_c}$$

where,

RF = Response factor for a specific analyte
A_c = Area of the analyte in the standard
I_s = Mass of the specific internal standard
A_s = Area of the specific internal standard
I_s = Mass of the analyte in the standard

 $RF_{ave} = \frac{RF_1 + ... + RF_n}{n}$ where

n = number of Samples

Revision of 6/28/94

Analytical Procedure for Pesticide/PCB in Soil

Extraction Procedure

Thirty grams of sample were mixed with thirty grams of sodium sulfate and were spiked with a surrogate solution consisting of tetrachloro-m-xylene and decachlorobiphenyl. The prepared sample was then extracted three times with 60 mL portions of hexane. The combined extracts were filtered and concentrated to 5.0 mL.

Gas Chromatographic Analysis

The samples were analyzed for pesticides and PCBs (screening) using simultaneous dual column injections. The analysis was done on an HP 6890 GC/ECD system, equipped with an HP 6890 automatic injector, and controlled with an HP-ChemStation. The following conditions were employed:

First Column

DB-608, 30 meter, 0.32mm fused silica capillary, 0.50 µm film thickness

Injector Temperature **Detector Temperature** 200 °C 325 °C

Temperature Program

120 °C for 1 minute

Injection Volume

9 °C/min to 285 °C, 10 min at 285 °C

luL

Second Column

Rtx-CLPesticides, 30 meter, 0.32mm fused silica

capillary, 0.50 µm film thickness

Injector Temperature Detector Temperature 200 °C 325 °C

120 °C for 1 minute Temperature Program

9 °C/min to 285 °C, 10 min at 285 °C

Injection Volume

The gas chromatographs were calibrated using 5 pesticide standards at 20, 50, 100, 200, and 500 μ g/L. The results from each mixture were used to calculate the response factor (RF) of each analyte and the average Response Factor was used to calculate the concentration of pesticide in the sample. Quantification was based on the DB-608 column (signal 1) and the identity of the analyte was confirmed using the Rtx-CLPesticides column (signal 2). A fingerprint chromatogram was run using each of the seven Aroclor mixtures and toxaphene; calibration curves were run only if a particular Aroclor or toxaphene was found in the sample.

The pesticide/PCB results for soil, listed in Table 1.3, are calculated by using the following formula:

$$C_{u} = \frac{DFxA_{u}xV_{t}}{RF_{ave}xV_{t}xWxD}$$

where

 C_u = Concentration of analyte ($\mu g/kg$)

DF = Dilution Factor
A_u = Area or peak height
V_t = Volume of sample (mL)
RF_{ave} = Average response factor

 V_i = Volume of extract injected (μ L)

W = Weight of sample (g)
D = Decimal percent solids

Response Factor calculation:

The RF for each specific analyte is quantitated based on the area response from the continuing calibration check as follows:

$$RF = \frac{A_u}{total \ pg \ injected}$$

where

A_u = Area or peak height

and

$$RF_{ave} = \frac{RF_1 + \dots + RF_n}{n}$$

where

n = number of samples

Revision 7/22/97

Analytical Procedure for Metals in Soil

The subcontracted laboratory determined the concentrations of metals in soil samples by following the SW-846 methods 6010 and 7000. The results of the analyses are listed in Table 1.4.

Analytical Procedure for Herbicides in Soil

The subcontracted laboratory determined the concentrations of herbicides in soil samples by following the method 8151A. The results of the analysis are listed in Table 1.5.

Analytical Procedure for Semivolatiles in Soil

The subcontracted laboratory determined the concentrations of semivolatiles in soil samples by following the method 8270C\3550B. The results of the analysis are listed in Table 1.5.

Analytical Procedure for TPH in Soil

The subcontracted laboratory determined the concentration of TPH in soil samples by following the modified EPA method 418.1. The results of the analysis are listed in Table 1.5.

Table 1.1 Results of the Analysis for VOC in Soil WA# 3-367 Naples Truck Stop Based on dry weight

SAMPLE #: LOCATION: COLLECTED: ANALYZED: INJECTED: FILE # DIL. FACT.: % Solid: UNIT:	11/04/98 11:13 AM A5195 1 100 µg/kg	e ·	3367-001 Location 1 11/02/98 11/04/98 12:00 A5196 1 86 µg/kg		3367-004 location 4 11/02/98 11/04/98 14:22 A5199 1 87 µg/kg			
COMPOUND	CONC.	MDL	CONC.	MDL	CONC.	MDL		
Dichlorodifluoromethane	U	1.0	U	1.2	Ú	1.1		
Chloromethane	Ü	1.0	บ	1.2	U	1.1		
Vinyl Chloride	U	1.0	U	1.2	U	1.1	*	
Bromomethane	U ^r	2.0	υ	2.3	·U	2.3	•	
Chloroethane	* · U	1.0	U	1.2	U	1.1		
Trichlorofluoromethane	U	1.0	Ú	1.2	:0:	1.1		
Acetone	Ü	2.0	U	2.3	430	2.3		*
1.1-Dichloroethene	Ü	1.0	Ù	1.2	₩	1.1		
Carbon Disulfide	Ŭ:	1.0	Ü	1.2	U	1.1		*
Methylene Chloride	Ŭ	1.0	. Ŭ	1.2	Ü	1.1		
Methyl-tertiary-butylether	Ü	1.0	Ü	1.2	Ü	1.1	•	
trans-1.2-Dichloroethene	νÜ	1.0	ŭ	1.2	Ü	1.1	·	
• • • • • • • • • • • • • • • • • • • •	` U	1.0	Ü	1.2	Ü	1.1		
1,1-Dichloroethane	Ü	4.0	Ü	4.7	12	4.6	*	* * * * * * * * * * * * * * * * * * * *
2-Butanone		1.0	Ü	1.2	. U	1.1		** **
2.2-Dichloropropane	U		-	1.2	Ü	1.1		
cis-1,2-Dichloroethene	U	1.0	U		U	1.1		
Chloroform	Ú	1.0	U	1.2	-	• • • •		
1,1-Dichloropropene	U	1.0	U	1.2	Ú	1.1		•
1,2-Dichloroethane	U	1.0	Ü	1.2	U	1.1	•	
1,1,1-Trichloroethane	U	1.0	· ·U	1.2	. U	1.1		
Carbon Tetrachloride	U	1.0	U	1.2	U	4.1	1 1	and the second section
Benzene	U	1.0	Ų	1.2	Ü	1.1		
Trichloroethene	U	1.0	Ü	1.2	Ü	1.1		
1.2-Dichloropropane	υ	1.0	U	1.2	Ü	1.1		
Dibromomethane	U	1.0	Ű	1.2	Ü	1.1	• "	
Bromodichloromethane	U	1.0	U	1.2	·U	1:1		
cis-1,3-Dichloropropene	U	1.0	Ü	1.2	U	1.1		
trans-1.3-Dichloropropene	Ü	1.0	U	1.2	U	1.1		
1.1.2-Trichloroethane	. Ū	1.0	U	1:.2	U	1,.1		
1.3-Dichloropropane	U	1.0	Ū	1.2	.U -	1.1		
Dibromochloromethane	Ü	1.0	Ū	1.2	U	1.1		
1.2-Dibromoethane	Ü	1.0	Ü	1.2	Ū	1.1	:	•
Bromoform	ŭ	1.0	ن	1.2	Ü	1.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
4-Methyl-2-Pentanone	ŭ	2.0	· Ü	2.3	Ū	2.3		
THE CHINE			. =		-			

Page 1 of 2 RV1173

Table 1.1 (cont.) Results of the Analysis for VOC in Soil WA# 3-367 Naples Truck Stop Based on dry weight

SAMPLE # : LOCATION : COLLECTED : ANALYZED : INJECTED : FILE # : DIL. FACT :: % Solid : UNIT :	11/04/98 11:13.AM A5195 1 100 µg/kg		3367-001 Location 1 11/02/98 11/04/98 12:00 A5196 1 86 µg/kg		3367-004 location 4 11/02/98 11/04/98 14:22 A5199 1 87 µg/kg				
COMPOUND	CONC.	MDL	CONC.	MDL	CONC.	MDL	CONC.	MDL CONC	MDL
	Ú	1.0	U	1.2	U	1.1			
Toluene	Ü	2.0	Ŭ	2.3	Ü	2.3			
2-Hexanone Tetrachloroethene	Ü	1.0	U ·	1.2	Ü	1.1	•		
Chiorobenzene	* · U	1.0	Ù	1.2	U	1.1	*		14 14
	υ	1.0	U-	1.2	Ü	1.1			
1,1,1,2-Tetrachloroethane	. U	1.0	ย	1.2	บ	1.1			
Ethylbenzene	U	1.0	Ü	1.2	Ŭ	1.1	11 2		
p & m-Xylene	Ü	1.0	Ü	1.2	Ü	1.1			
o-Xylene	U	1.0	Ü.	1.2	ΰ	1.1	4		•
Styrene	Ü	1.0	Ü	1.2	Ü	1.1			
Isopropylbenzene		1.0	Ü	1.2	· Ü	1.1	•		
1,1,2,2-Tetrachloroethane	、 ∪	1.0	Ü	1.2	Ü	1.1			
1,2,3-Trichloropropane	_	1.0	Ü	1.2	Ü	1.1		1.5	
Bromobenzene	U U	1.0	U	1.2	U	1.1			74
n-Propylbenzene	_	1.0	U	1.2	U	1.1			
2-Chlorotoluene	U		Ü	1.2	· U	1.1	•		
4-Chlorotoluene	U	1.0	U	1.2	U	1.1	**		
1,3,5-Trimethylbenzene	U	1.0		1.2	Ü	1.1			•
tert-Butylbenzene	U	1.0	U						
1,2,4-Trimethylbenzene	U	1.0	U	1.2	U	1,1			
sec-Butylbenzene	U	1:0	U	1.2	U	1.1			
1,3-Dichlorobenzene	U	1.0	U	1.2	Ü	5.1			
p-isopropyltoluene	U	1.0	Ú	1.2	U	1.1			
1 4-Dichlorobenzene	Ų,	1.0	U	1.2	U	1.1			100
1.2-Dichlorobenzene	U	1.0	U	1.2	U	1.1			
n-Butylbenzene	U	1.0	U	1.2	U	1.1			
1,2-Dibromo-3-Chloropropane		1.0	U	1.2	U	1.1			
1,2,4-Trichlorobenzene	Ü	1.0	U	1.2	Ü	1.1		, ,	
Naphthalene	U	1.0	U	1.2	U	1.1	•		
Hexachlorobutadiene	U	1.0	Ü	1.2	U	1.1			
1.2.3-Trichlorobenzene	Ū	1.0	U	1.2	บ	1.1			

Page 2 of 2 RV1173

Table 1.1 (cont.) Results of the Analysis for VOC in Soil WA# 3-367 Naples Truck Stop Based on dry weight

SAMPLE # : LOCATION : COLLECTED : ANALYZED : INJECTED : FILE # :	11/04/98 17:10 A5202		3367-009 Trip Blank 11/02/98 11/04/98 17:57 A5203		3367-008 Field Blank 11/02/98 11/04/98 18:44 A5204		3367-007 Fill 11/02/98 11/04/98 19:31 A5205		3367-006 Location 6 11/02/98 11/04/98 20:17 A5206	•
DIL. FACT.	1		1		1		1		1	
% Solid : UNIT :	100 µg/kg		100 µg/kg		100 µg/kg	•	95 µg/kg		92 µg/kg	`.
COMPOUND	CONC.	MDL	CONC.	MDL	CONC.	MDL	CONC.	MDL	CONC.	MDL
Dichlorodifluoromethane	U	1.0	Ú	1.0	U	1.0	U	1.1	U	1.1
Chloromethane	U	1.0	U	1.0	U	1.0	U	1.1	U	1.1
Vinyl Chloride	U	1.0	Ü	1.0	U	1.0	U	1.1	Ú	1.1
Bromomethane	U :	2.0	Ü	2.0	Ü	2.0	U	2.1	U	2.2
Chloroethane	7 ° U	1.0	U	1.0	U	1.0	U	1.1	U	1.1
Trichlorofluoromethane	, U	1.0	U	1.0	U	1.0	U	. 1.1	U	1.1
Acetone	Ü	2.0	U.	2.0	ับ	2.0	Ū	2.1	U	2.2
1,1-Dichloroethene	U	1.0	U	1.0	יט	1.0	Ü	1.1	U	1.1
Carbon Disulfide	Ü	1.0	U	1.0	Ü	1.0	U	1.1	Ü	1.1
Methylene Chloride	U	1.0	U	1.0	·U	1.0	U	1.1	U	1.1
Methyl-tertiary-butylether	Ü	1.0	ָּט י	1.0	U	1.0	U	1.1	Ü	1.1
trans-1,2-Dichloroethene	. U	1.0	U	1.0	U	1.0	U	1.1	Ü	1.1
1.1-Dichloroethane	Ù	1.0	U	1.0	Ü	1.0	" . U	1.1.	Ų,	1.1
2-Butanone	U "	4.0	U	4.0	U	4.0	U	4.2	U	4.3
2.2-Dichloropropane	Ü	1.0	U	1.0	U .	1.0	ับ	1.1	U	1.1
cis-1,2-Dichloroethene	Ü	1.0	ับ	1.0	· U	1.0	U	1.1	U	1.1
Chloroform	นั้	1.0	Ü	1.0	U	1.0	U	1.1	U	1.1
1,1-Dichloropropene	Ū.	1.0	.⊍	1.0	Ū	1.0	U	1.1	Ü	1.1
1.2-Dichloroethane	บ	1.0	Ü	1.0	Ū	1.0	U	1.1	U	11.1
1.1.1-Trichloroethane	Ü	1.0	Ü	1.0	Ū	1.0	Ū	1.1	U	1.1
Carbon Tetrachloride	ŭ	1.0	Ü	1.0	ŭ	1.0	Ü	1.1	U	1.1
Benzene	Ü	1.0	U.	1.0	. Ŭ	1.0	Ü	1.1	Ü	1.1
Trichloroethene	Ü	1.0	Ü	1.0	Ü	1.0	Ü	1.1		1.1
1.2-Dichloropropane	ט	1.0	Ü	1.0	Ū	1.0	Ü	1.1	Ü	1.1
Dibromomethane	יט	1.0	Ű	1.0	Ŭ	1.0	Ü	1.1	Ü	1.1
Bromodichloromethane	ŭ	1.0	Ü	1.0	Ü	1.0	Ü	1.1	Ü	1.1
	U	1.0	Ü	1.0	:0	1.0	Ü	1.1	Ū	1.1
cis-1,3-Dichloropropene	Ü	1.0	Ü	1.0	U	1.0	ů	1.1	Ŭ	1.1
trans-1,3-Dichloropropene	U	1.0	Ü.	1.0	U	1.0	ŭ	1.1	.U	1.1
1 1 2-Trichloroethane	Ü	1.0	Ü	1.0	Ü	1.0	Ū	1.1	Ü	5.1
1,3-Dichloropropane		1.0	.U	1.0	U	1.0	Ü	1.1	U	1.1
Dibromochloromethane	U		U	1:0	Ü	1.0	. U	1.4	Ŭ	1.1
1.2-Dibromoethane	U	1.0	ن ان:	11.0	Ü	1.0	U	1.1	U	1.1
Bromotorm	Ü	1.0	=		Ü		U	2.1	U	2.2
4-Methyl-2-Pentanone	U	2.0	· (U):	2.0	U	2.0	U	2.1	,,	2.2

Page 1 of 2 RV1174

Table 1.1 (cont.) Results of the Analysis for VOC in Soil WA# 3-367 Naples Truck Stop Based on dry weight

	COLLECTED: ANALYZED: INJECTED: FILE:#: DIL. FACT.: % Solid: UNIT:	11/04/98 17:10 A5202 1 100 µg/kg		Trip Blank 11/02/98 11/04/98 17:57 A5203 1 100 µg/kg		Field Blank 11/02/98 11/04/98 18:44 A5204 1 100 µg/kg		Fill 11/02/98 11/04/98 19:31 A5205 1 95 µg/kg		Location 6 11/02/98 11/04/98 20:17 A5206 1 92 µg/kg	
COMPOU	ÎND	CONC.	MDL	CONC	MDL	CONC.	MDL	CONC.	MDL	CONC.	MDL
Toluene		U	1.0	U	1.0	υ	1.0	U	1.1	U	1.,1
2-Hexanon	e	Ū	2.0	Ü	: 2.0	U	2:0	U	2.1	U	2.2
Tetrachioro		Ū	1.0	Ü	1.0	· U	1.0	U	1.1	Ú-	, 1.1
Chlorobenz		Ū	1.0	U	1.0	U	€ 1.0	Ü	1.1	Ų	1.1
	rachloroethane	~ · U	1.0	U	1,0	Ù.	1.0	Ü	1.1	υ	1.1
Ethylbenze	•	. U	1.0	U	1:.0	U	1.0	Ü	1.1	Ü	1.1
p & m-Xyle		Ü	1.0	U.	1:0	U	1.0	U,	1.1	Ü	1.1
o-Xylene		Ū.	1.0	U	1.0	Ü	1.0	U	1.1	U	1.1
Styrene		Ü	1.0	U	1:0	U	1.0	υ	1.1	U	1.1
Isopropylbe	enzene	Ü	1.0	Ü.	1.0	. U	1.0	Ü	1,1	U	1.1
	rachioroethane	ت	1.0	Ū	1.0	Ù	1.0	Ú.	1.1	U	1.1
	loropropane	160	1:0	Ū	1.0	U	1.0	Ů,	. 1.1	U	1.1
Bromobenz		, U	1.0	Ū	1.0	Ü	1.0	Ü	1.1	U	· 1.1
n-Propylber		Ü.	1.0	Ü	1.0	Ū	1.0	Ū	1.1	U	1.1
2-Chlorotol		Ü	1.0	Ŭ	1.0	Ü	1.0	ψ.	1.1	U	1.1
4-Chlorotol	•	Ü	1.0	Ü	1.0	Ü	1.0	บ	1.1	U	1.1
	ethylbenzene	Ü	1.0	Ü	1.0	שׁ	1.0	Ü	1.1	ับ	1.1
tert-Butylbe	- ,	Ü	1.0	Ü	1.0	U	1.0	U	1.1	U	1.1
	ethylbenzene	Ü	1.0	Ū	1.0	Ψ.	1.0	Ú.	1.1	Ü	1.1.
sec-Butylbe	•	Ü -	1.0	Ü	1.0	Ü	1.0	Ū	1.1	U¹	1.1
1 3-Dichlor		. ŭ	1.0	Ü	1.0	Ü	1.0	Ü	1.1	·U	1.1
p-Isopropyl		Ü	1.0	Ü	1.0	Ü	1.0	Ū	1.1	U	1.1
1.4-Dichlor	•	ΰ	1.0	J⊎	1.0	Ū.	1.0	Ü	1.1	U	1.1
1.2-Dichlor		Ü	1.0	Ü	1.0	Ū	1.0	Ū	1.1	U	1.1
n-Butylben		ű ·	1.0	U	1.0	Ü	1.0	Ü	1.1	Ü	1.1
	10-3-Chloropropane	Ü	1.0	Ы	1:0	Ü	1.0	Ü	1.1	Ü	1.1
	lorobenzene	Ü	1.0	Ŭ	1:0	Ŭ	1.0	Ū	1.1	Ü	1.1
Naphthaler	17. 7	Ü	1.0	Ü	1.0	Ü	1.0	Ü	1.1	Ū	1.1
Hexachior		Ü	1.0	Ü.	1.0	Ū	1.0	Ü	1.1	Ū	1.1
	lorobenzene	Ü	1.0	Ü	1.0	Ü	1.0	.U.	1.1	Ü	1.1

Page 2 of 2 RV1174

Table 1.1 (cont.) Results of the Analysis for VOC in Soil WA# 3-367 Naples Truck Stop Based on dry weight

SAMPLE #: LOCATION: COLLECTED: ANALYZED: INJECTED: FILE #: DIL. FACT.: % Solid: UNIT:	11/04/98 17:10 A5202 1 100 µg/kg		3367-005 Location 5 11/02/98 11/04/98 21:04 A5207 1 89 µg/kg		3367-003 Location 3 11/02/98 11/04/98 21:51 A5208 1 92 µg/kg		3367-002 Location 2 11/02/98 11/04/98 22:37 A5209 1 88 µg/kg	
COMPOUND	CONC.	MDL	CONC.	MDL	CONC.	MDL	CONC.	MDL
Dichlorodifluoromethane	U	1.0	U .	1:1	U	1.1	U	1.1
Chloromethane	Ü	1.0	U	1.1	Ü	1.1	U	1.1
VinyliChloride	Ü	1.0	U	1,1	U	1.1	Ü	1.1
Bromomethane	Ü	2.0	ย	2.2	U	2.2	U	2.3
Chloroethane	~ Ū	1.0	U	1,1	U	1.1	Ű	1.1
Trichlorofluoromethane	. U	1.0	ັປ	1.1	Ŋ	1.1	U	1.1
Acetone	:∪	2.0	61	2.2	46	2.2	. 46	2.3
1.1-Dichloroethene	U	1.0	U	1.1	U	1.1	U	1.1
Carbon Disulfide	U	1.0	U	1.1	U	1.1	U	1.1
Methylene Chloride	U	1.0	Ú	1.1	U	1.1	U	1.1
Methyl-tertiary-butylether	Ü	1.0	U	1.1	` U .	1.1	U	1,1
trans-1.2-Dichloroethene	. U	1.0	Ü ·	1.1	U .	1.1	Ü	1,1
1-1-Dichloroethane	` Ū	1.0	U	1.1	U	1.1	U	1.1
2-Butanone	Ū	4.0	Ü	4.5	บ	4.3	Ü	4.5
2.2-Dichloropropane	Ü	1.0	Ū.	1.1	U	1.1	U	1.1
cis-1,2-Dichloroethene	ָ ָט	1.0	Ü	1.1	U	1.1	Ü	1.1
Chloroform	ŭ	1.0	Ū	1.1	U	1.1	U	1.1
1.1-Dichloropropene	Ü	1.0	Ü	1.1	U	1.1	ıU:	1.1
1.2-Dichloroethane	บั	1.0	Ü	1.1	Ü	1.1	Ú.	1.1
1.1.1-Trichloroethane	Ŭ	1.0	Ü.	1.1	ש	1.1	Ü	1.1
Carbon Tetrachloride	ŭ	1.0	Ü	1.1	Ü	1.1	Ū	1.1
Benzene	ŭ	1.0	Ü	1.1	ับ	1.1	U	1.1
Trichloroethene	Ü	1.0	Ü	1.1	Ū	1.1	Ū	1.1
1.2-Dichloropropane	ŭ	1.0	Ü	1.1	Ū	1.1	Ü	1.1
Dibromomethane	Ŭ	1:.0	Ü	1.1	Ü	1.1	Ü	1.1
Bromodichloromethane	Ü	1.0	U	1.1	บ	1.1	u i	1.1
cis-1,3-Dichloropropene	Ü	1.0	Ü	1.1	Ü.	1.1	Ŭ	1.1
trans-1,3-Dichloropropene	Ü	1.0	U .	1 1	Ü	1.1	Ü	1.1
1.1.2-Trichloroethane	U ·	1.0	U	1 1	ŭ	1.1	ย .	1.1
1.3-Dichloropropane	Ü	1.0	U	1.1	Ü	1.1	Ü	1.1
Dibromochloromethane	Ü	1.0	Ü	11	Ü	1.1	Ü	1.1
	U:	1.0	Ü	1.1	Ü	1.1	ย	1.1
1.2-Dibromoethane	Ü	1.0	U .	1.1	U	1.1	Ü	1.1
Bromoform	U		Ü	2.2	(U)	2.2	Ü	2.3
4-Methyl-2-Pentanone	U	2.0	U	2.2	Ų.	.2.2	U	· · Ł.J

Page 1 of 2 RV1175

Table 1.1 (cont.) Results of the Analysis for VOC in Soil WA# 3-367 Naples Truck Stop Based on dry weight

SAMPLE #: LOCATION: COLLECTED: ANALYZED: INJECTED: FILE # DIL. FACT.: % Solid: UNIT:	11/04/98 17:10 A5202 1 100 µg/kg		3367-005 Location 5 11/02/98 11/04/98 21:04 A5207 1 89 µg/kg		3367-003 Location 3 11/02/98 11/04/98 21:51 A5208 1 92 µg/kg		3367-002 Location 2 11/02/98 11/04/98 22:37 A5209 1 88 µg/kg	
COMPOUND	CONC.	MDL	CONC.	MDL	CONC	MDL	CONC.	MDL
Toluene	U	1.0	U	1.1	U	1.1	U	1.1
2-Hexanone	Ü	2.0	Ü	2.2	U	2.2	U	2.3
Tetrachloroethene	Ū	1.0	U	1.1	U	1.1	U	1.1
Chlorobenzene	U	1.0	Ū	1.1	:⊎:	1.1	U	1.1
1,1,1,2-Tetrachloroethane	đ⊕ Ū	1.0	U	1.1	U	1.1	Ú	1.1
Ethylbenzene	Ü	1.0	U.	1.1	U ·	1.1	U	1.1
p & m-Xylene	Ü	1.0	U	1.1	U	1.1	U	1.1
o-Xylene	Ü	1.0	U	1.1	U `	1.1	Ú	1.1
Styrene	Ū	1.0	Ü	1.1	U	1.1	· U	1.4
isopropylbenzene	Ŭ	1.0	Ü	1.1	Ū	1.1	U	1.1
1,1,2,2-Tetrachloroethane	: Ŭ	1.0	Ü	1.1	Ü	1.1	Ü	1.1
1,2,3-Trichloropropane	. U	1.0	Ü	1.1	Ü	1.1	Ū	1.1
	` U	1.0	ีย	1.1	Ü	1.1	ŭ	1.1
Bromobenzene	U	1.0	U	1.1	י ט	1.1	ΰ	:1.1
n-Propylbenzene	U		Ü	1.1	Ü	1.1	Ŭ	1.1
2-Chlorotoluene	U	1.0	ָט ט	1.1	U	1.1	U	1.1
4-Chlorotoluene	-	1.0	U	1.1	Ü	1.1	Ü	1.1
1,3,5-Trimethylbenzene	U	1.0	_	1.1	U ·	1.1	ย	1.1
tert-Butylbenzene	U	1.0	U	1.1	ับ	1.1	U	1.1
1,2,4-Trimethylbenzene	U	1.0	ש		_	•	Ü	1.1
sec-Butylbenzene	U	1.0	U	1.1	U	1.1	_	1.1
1,3-Dichlorobenzene	, U	1.0	U	1.1	U	1.1	U	
p-isopropyltoluene	U	1.0	U	1.1	U	1.1	Ü	1.1
1.4-Dichlorobenzene	Ü	1.0	U	1.1	U	1.1	U	1.1
1.2-Dichlorobenzene	Ü	1.0	U	1.1	Ü	1.1	U	1.1
n-Butylbenzene	Ü	1.0	U	1.1	U	1.1	U	1.1
1,2-Dibromo-3-Chloropropane	U	1.0	U	1,1	U	1.1	U	1.1
1,2,4-Trichlorobenzene	ָׁ ט	1.0	U	1.1	U	1,:1	U	1.1
Naphthalene	U	1.0	U	1.1	U	1.1	U	1.1
Hexachlorobutadiene	U	1.0	U	101	U .	1.1	U	1.1
1.2.3-Trichlorobenzene	U U	1.0	U .	1.1	U, , -	1.1	U	1.1

Page 2 of 2 RV1175

Sample # SAND BLANK Unit µg/kg
LabFile# A5195 Con. Factor 1

	CAS#	Compound	Q	RT	Conc
. 1		NO PEAKS FOUND			o
2					0
3					0
4			į		0
5					0
6					0
7					0
8					0
9					0
10					0
11					0
12					0
13		•			0
14				٠.	0
15					_0
16					0
17					0
18					0
19				1	0
20					0

^{*}Estimated Concentration (Response Factor = 1.0)

Sample # 3367-001 Unit μg/kg
LabFile# A5196 Con. Factor 1.1628

	CAS#	Compound	Q	RT	Conc
1		NO PEAKS FOUND			0
2					0
3	1				O
4			•		C
5				3	(
6	 				
7	· · · · ·				,
8					(
9				1	(
10					(
11					
12					
13					1
14					
15					
17	-				
18		4	<u> </u>	1	
19 20	,				

*Estimated Concentration (Response Factor = 1.0)

 Sample #
 3367-004
 Unit
 μg/kg

 LabFile#
 A5199
 Con. Factor
 1.1494

	CAS#	Compound	Q	RT	Conc
1		NO PEAKS FOUND		i	
2					
3			:		
4			 		-
5					
6	· · · · · · · · · · · · · · · · · · ·		r		
7			1		
8					
9					
10					
11					
12	· ·				
13					
14	<u>,</u> ,-				
15	 		·····		
		1			
16					
17				 	
18,	<u> </u>				
19 20				 	

^{*}Estimated Concentration (Response Factor = 1.0)

Sample # SAND BLANK Unit µg/kg
LabFile# A5202 Con. Factor 1

T	CAS#	Compound	Q	RT	Conc
1		NO PEAKS FOUND			0
2				`	0
3			!		0
. 4					0
5			•		0
6					0
7		1			0
8					. 0
9					0
10	,				0
11				t	0
12:					0
13					0
14					0
1.5					0
16			-		0
17					0
18					0
19				4	0
20					. 0

^{*}Estimated Concentration (Response Factor = 1.0).

Sample # 3367-009 Unit $\mu g/kg$ LabFile# A5203 Con. Factor 1

	CAS#	Compound	Q	RT	Conc
1		NO PEAKS FOUND	3		0
2					O
3					0
4					C
5					C
6					(
7				1	(
8					(
9					
10					
11					
12					
13		1			
14			ì		
15					
16	,				
17					
18					
19					
20					

^{*}Estimated Concentration (Response Factor = 1.0)

 Sample #
 3367-008
 Unit
 μg/kg

 LabFile#
 A5204
 Con. Factor
 1

	CAS#	Compound		Q	RT	Conc
1		NO PEAKS FOUND				0
2						0
3						0
4	_ 		. 1			0
5				·		0
6						0
7						0
8						0
9	·					0
10			· · · · · · · · · · · · · · · · · · ·			0
11						o
12			* .			
13						O
14						0
15						0
16						0
17						C
18						
19	 					
20				†		

Estimated Concentration (Response Factor = 1:0)

 Sample #
 3367-007
 Unit
 μg/kg

 LabFile#
 A5205
 Con. Factor
 1.0526

	CAS#	Compound	Q	RT	Conc
1		NO PEAKS FOUND	•	<u>.</u>	0
2					0
3					0
4					0
5					0
6					0
7				1	: o:
8			·		0
9					0.
10					. 0
11				,	0
12					0
13.					0
14			, .	,***;	0
15					0
16				<u> </u>	0
17					<u> </u> 0
18					0
19				ļ	0
20				:	0

*Estimated Concentration (Response Factor = 1.0)

 Sample #
 3367-006
 Unit
 μg/kg

 LabFile#
 A5206
 Con. Factor
 1.087

•	CAS#	Compound	-	Q	RT	Conc
1	-	NO PEAKS FOUND		:.		0
2				,		0
3						0
4						0
5					<u> </u>	C
6						C
7						·O
8						C
9		•		•		
10						(
11			,			
12					s :	C
13					· ·	
14						
15				N.		
16					:	
1:7						
1.8						
19				,	*.	
20						

*Estimated Concentration (Response Factor = 1.0)

Sample # 3367-005 Unit μ g/kg LabFile# A5207 Con. Factor 1.1236

	CAS#	Compound	Q	RT	Conc
1		NO PEAKS FOUND	The state of the s		0
2					0
3					0
4					0
5					0
6					0
7					O
8					C
9				į	c
10					0
11					C
12					C
13					
14				:	
15					
16					
17					
18		3			
19	7.				
20					

^{*}Estimated Concentration (Response Factor = 1.0)

 Sample #
 3367-003
 Unit
 μg/kg

 LabFile#
 A5208
 Con. Factor
 1.087

CA	S#	Compound	Q.	RT	Conc
1	NO	PEAKS FOUND			
2					
. 3					
4					
5					(
6					
7				7	
8					
9			V P Ann. co		
10					
11			•		
12					
13		•			
14					
15					
16					
17					
18					
19					
20			1		1

^{*}Estimated Concentration (Response Factor = 1.0)

 Sample #
 3367-002
 Unit
 μg/kg

 LabFile#
 A5209
 Con. Factor
 1.1364

	CAS#	Compound	Q	RT	Conc
1		NO PEAKS FOUND			0
2					0
3					0
4					0
5					0
6					0
7			,		0
8					0
9	·				0
					0
10					0
11				 	0
12			;		0
13					0
14				 	1
15				 	0
16			<u> </u>		0
17	·				0
18					0
19	· · · · · · · · · · · · · · · · · · ·				0
20				<u>] </u>	0

^{*}Estimated Concentration (Response Factor = 1.0)

Table 1.3 Results of the Analysis for Pesticide/PCB in Soil
WA# 3-367 Naples Truck Stop
Based on dry weight

a-BHC U g-BHC U Heptachlor U d-BHC U Aldrin U Heptachlor Epoxide U g-Chlordane U a-Chlordane U Endosulfan (I) p,p'-D D E U Dieldrin U			3367-001 Location 1 85		3367-002 Location 2 88		92	3367-004 Location 4 87	
g-BHC U b-BHC U Heptachlor U d-BHC U Aldrin U Heptachlor Epoxide U g-Chlordane U a-Chlordane U Endosulfan (I) U p,p'-D D E U	MDL μg/kg	Conc. µg/kg	MDL µg/kg	Conc. µg/kg	MDL µg/kg	Conc. µg/kg	MDL µg/kg	Conc. µg/kg	MDL μg/kg
g-BHC U b-BHC U Heptachlor U d-BHC U Aldrin U Heptachlor Epoxide U g-Chlordane U a-Chlordane U Endosulfan (I) U p,p'-D D E U	3.3	U	3.9	U .	3.8	U	3.6	U	3.8
b-BHC U. Heptachlor U d-BHC U. Aldrin U Heptachlor Epoxide U g-Chlordane U a-Chlordane U Endosulfan (I) U p,p'-D D E U	3.3	U	3.9	U	3.8	U	3.6	U	3.8
Heptachlor d-BHC U Aldrin Heptachlor Epoxide g-Chlordane a-Chlordane Endosulfan (I) p,p'-D D E U U U U U U U U U U U U U		U	3.9	U	3.8	U	3.6	U	3.8
d-BHC U Aldrin U Heptachlor Epoxide U g-Chlordane U a-Chlordane U Endosulfan (I) U p,p'-D D E U	3.3	. U .	3.9	U	3.8	U	3.6	U	3.8
Aldrin U Heptachlor Epoxide U g-Chlordane U a-Chlordane U Endosulfan (I) U p,p'-D D E U	3.3	U	3.9	U	3.8	U	3.6	U	3.8
Heptachlor Epoxide U g-Chlordane U a-Chlordane U Endosulfan (I) U p,p'-D D E U	3.3	U	3.9	U	3.8	U	3.6	U	3.8
g-Chlordane U a-Chlordane U Endosulfan (I) U p,p'-D D E U	3.3	U	3.9	Ū	3.8	ับ 🦥	3.6	U,	3.8
a-Chlordane U Endosulfan (I) U p,p'-D D E U	3.3	U	3.9	U	3.8	U	3.6	U	3.8
Endosulfan (I) U' p,p'-D D E U	3.3	U	3.9	U	- 3.8	U	3.6	Ū	3.8
p,p'-D D E	3.3	Ŭ	3.9	U	3.8	U	3.6	U	3.8
	3.3	U	3.9	U	3.8	U	3.6	U	3.8
Dieidini	3.3	U	3.9	Ü	3.8	Ü	3.6	U	3.8
Endrin U	3.3	Ü	3.9	U	3.8	U	3.6	U	3.8
p,p'-D D D U	3.3	U	3.9	U	3.8	U	3.6	U	3.8
Endosulfan (II) U	3.3	U	3.9	U	3.8	U	3.6	U	3.8
p,p'-D D T U	3.3	U	3.9	U	3.8	U	3.6	u U	3.8
Endrin Aldehyde U	3.3	U	3.9	υ	3.8	U	3.6	U	3.8
Endosulfan Sulfate U	3.3	U	3.9	U	3.8	U	3.6	U	3.8
Methoxychlor U	3.3	Ü	3.9	U	3.8	U	3.6	U	3.8
Endrin Ketone U	3.3	U	3.9	U	3.8	U	3.6	U	3.8
Toxaphene U	83	U	98	U	95	U	90	U	95
Aroclor 1016 U	42	U	49	U	48	Ü	45	U	48
Aroclor 1221 U	83	U	98	U	95	U	90	U	95
Aroclor 1232 U	42	U	49	U	48	"U =	45	U	48
Aroclor 1242 U	42	U	49	U	48.	U	45	U	48
Aroclor 1248 U	42	· Ü	49	· U	48	1 J U	45	บ	48
Aroclor 1254 U	42	U	49	U	48	U	.45	U	48
Aroclor 1260 U	42	U	49	U	48	U	45	U	48

Table 1.3 (cont.) Results of the Analysis for Pesticide/PCB in Soil
WA# 3-367 Naples Truck Stop
Based on dry weight

Client ID Location Percent Solid	3367-005 Location 5 89		3367-006 Location 6 92		3367-007 Fill 94		Field	57-008 i Blank 100			
Analyte	Conc. μg/kg	MDL μg/kg	Conc. µg/kg	MDL µg/kg	Conc. µg/kg	MDL μg/kg	Conc. µg/kg	MDL μg/kg			
а-ВНС	Ü	3.7	บ	3.6	U	3.6	u U	3.3			
g-BHC	Ü	3.7	U	3.6	ប	3.6	U	3.3			
b-BHC	Ü		Į U	3.6	Ų	3.6	U -	3.3			
Heptachlor	U	3.7	U	3.6	U	3.6	U U	3.3			
d-BHC	U	3.7	U	3.6	U	3.6	U	3.3			
Aldrin	U	3.7	U	3.6	U	3.6	U	3.3			
Heptachlor Epoxide	U	3.7	Ü	3.6	Ū	3.6	U	3.3			
g-Chlordane	U	3.7	Ū	3.6	U	3.6	. U	3.3			
a-Chlordane	Ü	3.7	U	3.6	U	3.6	U	3.3			
Endosulfan (I)	¿Uːs	3.7	U	3.6	U	3.6	Ü	3.3			
p,p'-D D E	U	3.7	U	3.6	U	3.6	U	3.3			
Dieldrin	U	3.7	U	3.6	. U	3.6	U	3.3			
Endrin	U	3.7	Ú	3.6	U	3.6	บ	3.3			
p,p'-D D D	U	3.7	U	3.6	U	3.6	U	3.3			
Endosulfan (II)	Ü	3.7	U	3.6	U	3.6	U	3.3			
p,p'-D D T	U	3.7	U	3.6	U	3.6	U	3.3	•		
Endrin Aldehyde	U -	3.7	· U	3.6	U	3.6	U	3.3			
Endosulfan Sulfate	· Ü	3.7	U	3.6	Ü	3.6	U	3.3			
Methoxychlor	U	3.7	Ü	3.6	U	3.6	U	3.3			
Endrin Ketone	υ	3.7	U	3.6	U	3.6	U	3.3			
Toxaphene	U	93	U	90	U.		U	83			
Aroclor 1016	U	47	U	45	U	44	U	42			
Aroclor 1221	υ	93	U	90	U	89	U	83	· '		
Aroclor 1232	U	47	U	:45	U	.44.	U	42			
Aroclor 1242	U	47	U	45	U	44	U	42			
Aroclor 1248	U	47	U	45	Ū	44	U	42			
Aroclor 1254	U.	47	U	45	U	44	U	42	•		
Aroclor 1260	U.	47	U	45	U	44	Ü.	42			

Table 1.4 Results of the Analysis for Metals in Soil
WA # 3-367 Naples Truck Stop
Based on dry weight

Client ID Location % Solids	Method Blank Lab 100		3367-001 Location 1 75		Loc	3367-002 Location 2 77		3367-003 Location 3 79		3367-004 Location 4 78		3367-005 Location 5 77	
Parameter	Conc mg/kg	MDL mg/kg	Conc mg/kg	MDL mg/kg	Conc mg/kg	MDL mg/kg	Conc mg/kg	MDL mg/kg	Conc mg/kg	MDL mg/kg	Conc mg/kg	MDL mg/kg	
Aluminum	บ	4.4	5490		7700		5930		7590		8740		
Antimony	U	0.3	U	0.4	U	0.39	U	0.38	U	0.39	U	0.39	
Arsenic:	Ů	0.4	5.1		5.3		5.6		5.1		5.3		
Barium	Ü	0.1	230		150		208		243		218		
Beryllium	. U	0.1	0.37		0.51		0.4		0.47	•	0.49		
Cadmium	Ü		U	0.4	U	0.39	U	0.38	0.39	÷	U	0.39	
Calcium	U	5.0	57400		42800		92100		74600		60700		
Chromium	Ü		8		9.8		7.5		9		10.2		
Cobalt	Ü	0:1	3.1		4.2		4.3	* . •	3.1		3.9		
Copper	Ü		7.7		10		9.7		7.3		9.5		
lron	U	2.1	7370		9440		7450		7910		8650		
Lead	0.273	0.1	13		9.2		5.9		5.4		6.7		
Magnesium	U	1.0	5410		6390		7740		8360		6170		
Manganese	Ü	0.2	146		210		204		1,75		155		
Mercury	U	0.05	U	0.07	U	0:06	U	0.06	. U	0.06	U	0.06	
Nickel	Ü	0.2	6.7		9.5		8.7		6.9		8.2		
Potassium	U	-	1230		2130	•	1300		1430		1720		
Selenium	U	0.3	U	0.4	U	0.39	U		U		U	0.39	
Silver	U	0.2	. U	0.27	U	0.26	U		U	0.26	. U		
Sodium	Ù	76.9	285	•	211		354		193		172		
Thallium	U	0.6	U	0.8	U	0.78	U	,	U		U		
Vanadium:	U	0.1	20.2		20.3		19.9		21.3		21.8		
Zinc	1.855	0.2	26.7	•	30.3		22.5		22.9		28		
Boron	Ü	0.8	7.1		9.9		9.6		14.7		12		
Molybdenum	U	0.1	1		0.75		0.71		0.62		0.73		

Table 1.4 (cont.) Results of the Analysis for Metals in Soil
WA # 3-367 Naples Truck Stop
Based on dry weight

Client ID Location % Solids	3367-006 Location 6 81		3367-007 Fill 82		Field	7-008 I Biank 86	•			
Parameter	Conc mg/kg	MDL mg/kg	Conc mg/kg	MDL mg/kg	Conc mg/kg	MDL mg/kg				
Aluminum	5230		4320		24.3					
Antimony	U	0.38	U	0.37	U	0.35	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
Arsenic	3.1		3.7		U	0.46				9
Barium	155		163		0.37					
Beryllium	0.4		0.31		U	0.12		• •		
Cadmium	0.43		U	0.37	.U	0.35	•		•	
Calcium	21500		24900		37.1					
Chromium	7.1		7		0.27		•			•
Cobalt	3.2		3.5		U	0.12	•			
Copper	9.1		8		2		•			
Iron	7110	•	7520		94.4		e" •			
Lead	7.3		6		0.63					
Magnesium	4230		4330		10.6	•				
Manganese	240		200		2.3					
Mercury	U	0.06	U		U	0.06				
Nickel	. 7	•	6.9		U	0.23				
Potassium	1720	N.	999		U	15.9				
Selenium	U	0.38	υ		U	0.35				
Silver	Ü	0.25	U	0.24	Ū	0.23		•		•
Sodium	107		289		Ù	89.2				
Thallium	U	0.75	U		U	0.7		`		
Vanadium	13.3		13.3		U					
Zinc	30		24.7		2.7					
Boron	4.2		4.2		U					
Molybdenum	0.51	•	0.45		U				,	

Table 1.5 Results of the Analysis for Herbicides, Semivolatiles, and TPH in Soil WA #3-367 Naples Truck Stop

Based on dry weight

Client ID Location % Solids	Method Blank Lab		3367-001 Location 1 87		3367-002 Location 2 89		3367-003 Location 3 92		3367-004 Location 4 88		3367-005 Location 5 89	
Parameter	Conc µg/kg	MDL μg/kg	Conc µg/kg	MDL µg/kg	Conc µg/kg	MDL μg/kg	Conc µg/kg	MDL μg/kg	Conc µg/kg	MDL μg/kg	Conc µg/kg	MDL μg/kg
2.4-D	U	200	U	230	U	220	· U	220	U	230	Ü	220
2.4-DB	Ū	200	U	230	. บ	220	U	220	U	230	U	220
.4.5-T	ับ	40	U	46	U	45	U U	43	U	45	Ü	45
2.4.5-TP (Silvex)	Ū	40	· U	46	U	45	U,	43	U	45	U	45
Dalapon	U	1200	U	1400	U	1300	U	1300	U	1400	U	1300
Dicamba	U	60	Ü	69	์ บ	67	U	65	U	68	U	67
Dichloroprop	Ū	140	U	160	Ü	160	U	150	Ū	160	U	160
Dinoseb	Ù	14	U	16.	Ü	16	U	15	Ü	16	U	16
ACPA	Ū	40000	· U	46000	Ü	45000	U	43000	U	45000	U	45000
ИСРР	U		ับ	46000	U	45000	, U	43000	· . U	45000	U	45000
-Nitrophenol	· U	2500	· υ	2800	U.	2800	บ	2700	υ	2800	U	2800
entachlorophenol	U	2500	U	2800	บ	2800	U	2700	U	2800	U	2800
ibrary search:												
Bentazon	U		U		U	_	Ü	.—	U	_	U	-
Chloramben	Ü		Ū		U		U	_	U	_	U	· —
5-Hydroxydicamba	U	-	Ü	. -	U	: -	U	_	U		U	
трн••	Ū	25	44	29	Ü	28	υ.	27	U	28	U	28

^{**}The units for TPH are mg/kg.

Table 1.5 (cont.) Results of the Analysis for Herbicides, Semivolatiles, and TPH in Soil WA # 3-367 Naples Truck Stop

Based on dry weight

Client ID Location % Solids	3367-006 Location 6 93		3367-007 Fill 94		3367-008 Field Blank 100					
Parameter	Conc µg/kg	MDL μg/kg	Conc µg/kg	MDL μg/kg	Conc µg/kg	MDL µg/kg				
2,4-D	U	220	U	210	U	200				
2,4-DB	Ü	220	Ū	210	U	200				
2,4,5-T	Ü	43	Ū	43	U	40				
2,4,5-TP (Silvex)	U		. U	43	บ	40				
Dalapon	U	1300	U	1300	บ	1200				* *
Dicamba	Ü	65	U	64	U	60				
Dichloroprop	Ü	150	U	150	Ü	140				
Dinoseb	U	- 15	U·	15	Ü	14			•	
MCPA	·U	43000	. U	43000	U	40000				
МСРР	U	43000	.บ	43000	· U .	40000	:			
4-Nitrophenol	U	2700	U	2600	NA					
Pentachlorophenol	U	2700	'U	2600	·NA					
Library search:		-								
Bentazon	· U	_	U	 . '	NA					
Chloramben	U		U	_	'NA			•		
5-Hydroxydicamba	U	. —	, U		NA					
TPH••	U	27	U	27	NA		* * * * * * * * * * * * * * * * * * *			

^{**}The units for TPH are mg/kg.

OA/OC for VOC in Soil

Results of the Internal Standard Areas and Surrogate Percent Recoveries for VOC in Soil

Prior to extraction, each sample was spiked with a three component surrogate mixture consisting of 1,2-dichloroethane-d4, toluene-d8, and bromofluorobenzene. The surrogate percent recoveries, listed in Table 2.1, ranged from 84 to 102. All 42 recoveries were within acceptable QC limits. The internal standard areas are also listed in Table 2.1. All 42 internal standard areas were within QC criteria.

Results of the MS/MSD Analysis for VOC in Soil

The sample 3367-002 was chosen for the MS/MSD analysis. The percent recoveries, listed in Table 2.2, ranged from 85 to 98. All ten percent recoveries were within acceptable QC limits. The RPD values also listed in Table 2.2, ranged from 0 (zero) to 5. All five RPD values were within acceptable QC limits.

Table 2.1 Results of the Internal Standard Areas and Surrogate Percent Recoveries for VOC in Soil WA# 3-367 Naples Truck Stop

			Internal Standards			Surrogates			
	Sample #	Data File	1 area	2 area	3 area	DIC	TOL X	BRO %	
CAL CHECK	50 PPB VOC	>A5194	33172	195049	171003	NA	NA	NA.	· •
SAND BLANK		>A5195	38893	214918	185511	85	94	95	
	3367-001	>A5196	34660	191716	155979	:84	96	93	
	3367-004	>A5199	37351	212264	173880	86	96	93	*0.

	ATE		

SOIL

S1 (DIC) = 1,2-Dichloroethane-d4 S2 (TOL) = Toluene-d8 S3 (BRO) = Bromofluorobenzene

*A = Area is > 200% or < 50% of Cal Check *R = RT is Plus or Minus .5 min. of Cal Check *O = There is a compound in the sample over 200

(70-121) (81-117) (74-121)

Table 2.1 (cont.) Results of the Internal Standard Areas and Surrogate Percent Recoveries for VOC in Soil WA# 3-367 Naples Truck Stop

in the first			Internal	Standards		Surrogates		
	Sample #	Data File	1 area	2 area	3 area	DIC X	TOL X	BRO %
CAL CHECK	50 PPB VOC	>A5201	34912	206601	166917	NA	NA	NA
SAND BLANK		>A5202	33913	193970	158984	95	99	101
	3367-009	>A5203	34908	202724	167236	95	98	102
	3367-008	>A5204	37027	206475	171130	93	96	101
	3367-007	>A5205	31701	186945	15 382 2	96	98	98
	3367-006	>A5206	32996	192237	155799	96	99	96
	3367-005	>A5207	36160	205623	173326	97	97	100
	3367-003	>A5208	34184	193715	160359	95	97	99
	3367-002	>A5209	34205	200386	173621	96	95	101
. 4144444	3367-002MS	>A5210	33449	190733	159305	95	96	97
	3367-002MSD	>A5211	30756	183943	149663	95	98	97
	3367-004 2x	>A5212	35084	203297	168511	95	97	99
						,		

SURROGATE LIMITS

SOIL

- T	•			
the control of the control of	2 4 5	274 24 2		
S1 (DIC)	- 1 2-0	ichles	anthan	n-d/.
SE CUILF	= 1.2-0	ICITO	ue Liiai i	E
-6 3-6			- 17	

(70-121) (81-117) (74-121)

*A = Area is > 200% or < 50% of Cal Check
*R = RT is Plus or Minus .5 min. of Cal Check
*O = There is a compound in the sample over 200

S2 (TOL) = Toluene-d8 S3 (BRO) = Bromofluorobenzene

Table 2.2 Results of the MS/MSD Analysis for VOC in Soil: WA# 3-367 Naples Truck Stop. Based on dry weight

Sample ID: 3367-002

	Sample	MS Spike	MSD Spike Added (µg/kg)	MS Conc. (μg/kg)	MSD Conc. (µg/kg)	MS % Rec	MSD % Rec.	% RPD	QC Limits	
Compound Name	Conc. (µg/kg)	Added (µg/kg)							RPD	% Rec.
	<u></u>	-:					. , 			
1.1-Dichloroethene	Ü	56.8	56.8	48.0	50.2	85	-88	5	22	59 - 172
Trichloroethene	ıij.	• 56.8	56.8	52.4	52.4	92	92	0.	24	62 - 137
Benzene	บ	56.8	56.8	55.8	55.2	98	97	1	21	66 - 142
Toluene	Ū	-56:8	56.8	53.3	54.3	94	96	2	21	59 - 139
Chlorobenzene	ប	56.8	56.8	53.7	54.9	95	97	2	21	60 - 133

QA/QC for Pesticide/PCB in Soil

Results of the Surrogate Recoveries for Pesticides/PCB in Soil

Prior to extraction, each sample was spiked with the surrogates tetrachloro-m-xylene and decachlorobiphenyl. The surrogate percent recoveries, listed in Table 2.3, ranged from 95 to 126. All twenty-two surrogate percent recoveries were within acceptable QC limits.

Results of the MS/MSD Analysis for Pesticide/PCB in Soil

The sample 3367-002 was chosen for the matrix spike/matrix spike duplicate (MS/MSD) analysis. The percent recoveries, listed in Table 2.4, ranged from 35 to 106. Ten out of twelve percent recoveries were within the acceptable QC limits. The RPD values, also listed in Table 2.4, ranged from 0 (zero) to 6. All six RPD values were within the acceptable QC limits.

Table 2.3 Results of the Surrogate Recoveries for Pesticide/PCB in Soil WA# 3-367 Naples Truck Stop

			Percent Recovery
Sample ID		TCMX	DCBP
SBLK110498		105	126
3367-001		95	106
3367-002		98	109
3367-002MS	•	106	118
3367-002MSD		105	126
3367-003	•	100	114
3367-004		105	122
3367-005		110	121
3367-006	•	108	120
3367-007		104	114
3367-008	. .	98	109

•		ADVISORY
*		QC
		Limits
Tetrachloro-m-xyle	ene (TCMX)	60-150
Decachlorobiphen		60-150

Table 2.4 Results of the MS/MSD Analysis for Pesticide/PCB in Soil WA# 3-367 Naples Truck Stop
Based on dry weight

Sample ID: 3367-002

Compound	Sample Conc µg/kg	MS Spike Added μg/kg	MS Conc µg/kg	MS % Rec		MSD Spike Added µg/kg	MSD Conc μg/kg	MSD % Rec		RPD	Advi QC L % Rec	•
g-BHC	U	23.755	8.511	36	*	23.755	8.397	35	*	3	46-127	50
Heptachlor	Ū	23.755	20.446	86		23.755	21.143	89		3	35-130	31
Aldrin	Ū	23.755	24.357	103		23.755	24.502	103	•	0	34-132	43
Dieldrin	Ū	47.510	50.195	106		47.510	50.375	106		0	31-134	38
Endrin	U	47.510	48.171	101		47.510	48.887	103		2	42-139	45
p,p'-DDT	Ü	47.510	23.931	50		47.510	24.977	53		6	23-134	50

OA/OC for Metals in Soil

Results of the Matrix Spike Analysis for Metals in Soil

The sample 3367-002 was chosen for the matrix spike (MS) analysis. The percent recoveries, listed in Table 2.5, ranged from 26 to 131. Seventeen out of nineteen percent recoveries were within acceptable QC limits.

Results of the LCS Analysis for Metals in Soil

The percent recoveries for the LCS analysis, listed in Table 2.6, ranged from 72 to 89. All twenty-five recovered concentrations were within acceptable QC limits.

Results of the Duplicate Analysis for Metals in Soil

The sample 3367-002 was chosen for the duplicate analysis. The reported RPD values, listed in Table 2.7, ranged from 1 (one) to 44. Fourteen out of nineteen reported RPD values were within the acceptable QC limits. RPD values were not calculated for antimony, cadmium, mercury, selenium, silver, and thallium since one or both of the results for these metals was below the MDL (U).

Table 2.5 Results of the Matrix Spike Analysis for Metals in Soil
WA # 3-367 Naples Truck Stop
Based on dry weight

Sample: 3367-002

			Matrix		• •
Metal	Sample	Spike	Spike	MS	QC
	Conc.	Added	Conc.	% Recovery	Limits
	mg/kg	mg/kg	mg/kg		%Rec.
	•	10.05	2.40	200	75-125
Antimony	Ü	12.97	3.40	26 * 131 *	
Arsenic	5.2503	5.19	12.08	131	75-125
Barium	149.6485	259.40	413.22	102	75-125
Beryllium	0.5123	6.49	6.54	93	75-125
Cadmium	U	6.49	5.99	92	75-125
Chromium	9.799	25.94	35.13	98	75-125
Cobalt	4.1868	64.85	61.00	88	75-125
Copper	9.9 8 44	32.43	42.64	101	75-125
Lead	9.1595	2.59	12.16	116	75-125
Manganese	210.2827	64.85	281.62	110	75-125
Mercury	U	0.65	0.60	93	75-125
Nickel	9.4942	64.85	67.43	89	75-125
Selenium	U	1.30	1.30	100	75-125
Silver	\mathbf{U}	6.49	6.39	98	75-125
Thallium	U	6.49	5.26	8 1	75-125
Vanadium	20.3476	64.85	82.75	96	75-125
Zinc	30.262	64.85	91.46	94	75-125
Boron	9.8962	259.40	228.15	- '	75-125
Molybdenum	0.7528	259.40	253.05	and the second s	75-125

Table 2.6 Results of the LCS Analysis for Metals in Soil WA # 3-367 Naples Truck Stop

Compound Name	True Value (mg/kg)	Found Value (mg/kg)	LCS % Rec.	QC Limits (mg/kg)	
Aluminum	5720.0	4521.2	79	3760 - 7690	
Antimony	26.6	20.4	77	3.5 - 49.6	
Arsenic	163.0	142.8	88	102 - 225	
Barium	195.0	141.1	72	128 - 261	
Beryllium	78.9	66.2	84	56.5 - 101	
Cadmium	114.0	91.3	80	84.9 - 142	
Calcium	1280.0	1027.0	80	903 - 1660	
Chromium	175.0	142.8	82	121 - 229	
Cobalt	73.7	58.4	79	51.8 - 95.6	
Copper	91.0		87	64.6 - 117	
Iron	9080.0		75	4830 - 13300	
Lead	66.0		84	44.7 - 87.3	
Magnesium	1210.0	1014.0	84	888 - 1530	
Manganese	261.0	·	83	204 - 319	
Mercury	1.8		89	1.0 - 2.6	
Nickel	68.3	52.9	78	38.1 - 98.6	
Potassium	1500.0	1272.9	85	957 - 2040	
Selenium	123.0	104.6	85	91.4 - 155	
Silver	57.2	49.3	86	40.8 - 73.5	
Sodium	1380.0	1090.0	79	939 - 1830	
Thallium	80.0	68.9	86	45.8 - 114	
Vanadium	95.4	76.2	80	65.1 - 126	
Zinc	190.0	159.5	84	144 - 236	
Boron	121.0	89.8	74	81.8 - 161	
Molybdenum	112.0	94.4	84	78.9 - 146	

Table 2.7 Results of the Duplicate Analysis for Metals in Soil
WA # 3-367 Naples Truck Stop
Based on dry weight

Sample ID: 3367-002

Compound Name	Sample Conc. (mg/kg)	Dup Conc. (mg/kg)	% RPD	QC Limits % RPD
			<u> </u>	
Aluminum	7700.7782	5680.1232	30 *	20
Antimony	. U	U	NC	20
Arsenic	5.2503	5.8223	10	20
Barium	149.6485	190.3126	24 *	20
Beryllium	0.5123	0.5032	2	20
Cadmium	U	0.4669	NC	20
Calcium	42839.0713	46439.1881	8	20
Chromium	9.7990	6.8080	36 *	20
Cobalt	4.1868	3.5396	17	20
Copper	9.9844	9.8547	1	20
Iron	9438.5045	8034.0285	16	20
Lead	9.1595	9.3217	2	20
Magnesium	6393.0856	6031.4955	6	20
Manganese	210.2827	232.7613	10	20
Mercury	U	Ü	NC	20
Nickel	9.4942	8.4436	12	20
Potassium	2130.5136	1560.9663	31 *	20
Selenium	U	0.4475	NC	20
Silver	U	Ü	NC	20
Sodium	211.4838	329.8470	44 *	20
Thallium	U	U	NC	20
Vanadium	20.3476	18.1920	11	20
Zinc	30.2620	26.7276	12	20
Boron	9.8962	8.5992	14	20
Molybdenum	0.7523	0.8949	17	20

QA/QC for Herbicides, Semivolatiles, and TPH in Soil

Results of the Surrogate Recoveries for Herbicides and Semivolatiles in Soil

Prior to extraction, each sample was spiked with the surrogate 2,4-dichlorophenylacetic acid for herbicides analysis and the six surrogates 2-fluorophenol, phenol-d5, nitrobenzene-d5, 2-fluorophenyl, 2,4,6-tribromophenol, and p-terphenyl-d14 for semivolatiles analysis. The surrogate percent recoveries, listed in Table 2.8, ranged from 50 to 207. All twelve herbicides surrogate percent recoveries were within the acceptable QC limits. Sixty-three out of 66 semivolatiles surrogate percent recoveries were within the acceptable QC limits.

Results of the MS/MSD Analysis for Herbicides, Semivolatiles, and TPH in Soil

The sample 3367-002 was chosen for the matrix spike/matrix spike duplicate (MS/MSD) analysis. The percent recoveries, listed in Table 2.9, ranged from 3 to 131. Twenty-four out of 26 percent recoveries were within the acceptable QC limits. The RPD values, also listed in Table 2.9, ranged from 2 to 37. All thirteen RPD values were within the acceptable QC limits.

Results of the LCS Analysis for Herbicides, Semivolatiles, and TPH in Soil

The percent recoveries for the LCS analyses, listed in Table 2.10, ranged from 0 (zero) to 114. Twelve out of thirteen percent recoveries were within the acceptable QC limits.

Table 2.8 Results of the Surrogate Recoveries for Herbicides and Semivolatiles in Soil
WA # 3-367 Naples Truck Stop

Client ID Method Blank Location Lab % Solids	3367-001 Location I 87	3367-002 Location 2 89	3367-003 Location 3 92	3367-004 Location 4 88	QC
Surrogate (%)	(%)	(%)	(%)	(%)	Limits (%)
Herbicides 2.4-Dichlorophenylacetic acid 129 Semiyolatiles:	115	112	120	109	(50 - 150)
2-Fluorophenol 66 Phenol-d5 71 Nitrobenzene-d5 62 2-Fluorobiphenyl 76 2.4,6-Tribromophenol 92 p-Terphenyl-d14 135	64 74 59 72 106 135	68 75 62 76 100 132	67 78 64 87 106 135	71 82 67 86 105 133	(25 - 121) (24 - 113) (23 - 120) (30 - 115) (19 - 122) (18 - 137)

Table 2.8 (cont.) Results of the Surrogate Recoveries for Herbicides and Semivolatiles in Soil
WA # 3-367 Naples Truck Stop

Client ID Location % Solids	3367-005 Location 5 89	3367-006 Location 6 93	3367-007 Fill 94	3367-008 Field Blank 100	~
Surrogate	(%)	(%)	(%)	(%)	QC Limits (%)
Herbicides:	-		· ·		
2,4-Dichlorophenylacetic acid	116	136	:113	122	(50 - 150)
Semivolatiles:	-	•			<i>:</i>
2-Fluorophenol Phenol-d5 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol p-Terphenyl-d14	78 86 72 90 107 135	79 90 76 97 107	94 66 89 200 * 207 *	NA NA NA NA NA	(25 - 121) (24 - 113) (23 - 120) (30 - 115) (19 - 122) (18 - 137)

Table 2.8 (cont.) Results of the Surrogate Recoveries for Herbicides and Semivolatiles in Soil WA # 3-367 Naples Truck Stop

Client ID Location % Solids	3367-002MS Location 2 89	3367-002MSD Location 2 89	LCS — —	00
Surrogate	(%)	(%)	(%)	QC Limits (%)
Herbicides: 2.4-Dichlorophenylacetic acid: Semivolatiles:	123	116	127	(50 - 150)
2-Fluorophenol Phenol-d5 Nitrobenzene-d5 2-Fluorobiphenyl 2.4.6-Tribromophenol p-Terphenyl-d14	60 69 59 71 100 123	59 71 58 73 100 129	51 59 50 62 98 125	(25 - 121) (24 - 113) (23 - 120) (30 - 115) (19 - 122) (18 - 137)

Table 2.9 Results of the MS/MSD Analysis for Herbicides, Semivolatiles, and TPH in Soil WA# 3-367 Naples Truck Stop

Based on wet weight

Sample ID:

3367-002

Compound	Sample Conc µg/kg	MS Spike Added µg/kg	MS Conc µg/kg	MS % Rec	MSD Spike Added µg/kg	MSD Conc µg/kg	MSD % Rec	RPD	Advis QC Li % Rec	
Herbicides:			·. · ·							
Dalapon	U	1248	180	14	1248	198	. 16	10	10 - 150	40
MCPA	U	49900	51168	102	49900	55370	111	:8	10 - 150	40
Dicamba	U. ·	49.9	26.7	53	49.9	28.0	56	5	10 - 150	40
MCPP	U	49900	65343	131	49900	50684	101	25	10 - 150	40
Dichloroprop	Ú	499	506	101	499	490	98	3	10 - 150	40
2,4-D	U	499	500	100	499	447	89	- 11	48 - 214	40
2.4.5-TP (Silvex)	ับ	49.9	47.0	94	49.9	40.1	80	16	58 - 168	40
2,4.5-T	ับ	49.9	53.2	106	49.9	43	86	22	40 - 140	40
Dinoseb	ប	250	6:91	3 *	250	10.0	4 '	37	10 - 150	40
2.4-DB	Ü	499	472	94	499	442	89	7	40 - 140	40
Semivolatiles:				-	٠.,		•		. •	
4-Nitrophenol	Ū	5000	5476	110	5000	5597	112	2.	25 - 141	40
Pentachlorophenol	U	5000	4824	97	5000	5010	100	4	38 - 146	40
TPH**	U	250	257	103	250	262	105	2	47 - 139	30
									•	

^{••} The units for TPH are mg/kg.

Table 2.10 Results of the LCS Analysis for Herbicides, Semivolatiles, and TPH in Soil

WA # 3-367 Naples Truck Stop

Compound Name	True Value (μg/kg)	Found Value (µg/kg)	LCS % Rec.	QC Limits (%)
		91 1		
Herbicides:				
Dalapon	1250	749	60	10 - 150
MCPA	50000	51618	103	10 - 150
Dicamba	50	55.0	110	10 - 150
мсрр ,	50000	56800	114	10 - 150
Dichloroprop	500	534	107	10 - 150
2,4-D	500	528	106	48 - 214
2,4,5-TP (Silvex)	50	49.4	99	58 - 168
2,4,5-T	50	47.2	94	40 - 140
Dinoseb	250	0:	0 *	10 - 150
2,4-DB	500	506	101	40 - 140
Semivolatiles:				
4-Nitrophenol	5000	5534	111	25 - 141
Pentachlorophenol	5000	4805	96	38 - 146
TPH**	250	253	101	76 - 115

^{**}The units for TPH are mg/kg.

CHAIN OF CUSTODY RECORD

COC # 3367-0004

REAC, Edleon, NJ

Contact: Jennifer Royce (732) 321-4200

WO#: 03347-143-001-298

EPA Contract 68-C4-0022

Location: Naples, UT

Project Name: Naples Truck Stop

Site Phone:

Cooler #:01 48

Lab: REAC

Contact: Charles Gasser

BF	Tag	Sample #	Location	Matrix	Collected	Container/Preservative	Analysis Requested	MS MSD	Comments
1 4 -	E	3387-001	Location 1	Soil	11/2/98	8 oz glass/4 C	Pesticides/PCB		
75	E	3367-002	Location 2	Soll	11/2/98	8 oz glase/4 C	Pesticides/PCB	Yes	
76	E	3387-003	Location 3	Soil	11/2/98	8 oz glass/4 C	Pesticides/PCB		
77	E	3387-004	Location 4	Soil	11/2/98	8 oz glass/4 C	Pesticides/PCB		
18	E	3387-005	Location 5	Soil	11/2/98	8 oz glass/4 C	Pesticides/PCB		
	E	3367-006	Location 6	Soll	11/2/98	8 oz glass/4 C	Pesticides/PCB		
80	E -	3387-007	FIII	Soil	11/2/98	8 oz glase/4 C	Pesticides/PCB		
81	E	3387-008	Field Blank	Soll	11/2/98	8 oz glase/4C	Pesticides/PCB		
· · · · · · · · · · · · · · · · · · ·	+		The state of the s	. <u>*</u> *		h			
	•	1	- 4 · · · · · · · · · · · · · · · · · ·			•			
		• • • • • • • • • • • • • • • • • • •	The same of the sa						
	† = ·	-							
	1		The state of the s						
ت ختید		· · · · · · · · · · · · · · · · ·			,				
	†		- I		_				
									•
	<u> </u>	•4 =							
	†	1 =							
		1	- I						
	-	···		* **					

Special instructions:

aci full

tems/Resson

Date Received By Relinquished By All/Analysis Junny Rux 113kis C. Garan

11/4/98 10:00 A11/Analysis

Relinquished By C. Gusses

REFERENCE COC:

Received By

1/4/18 Afthe Tupus files a sau

CHAIN OF CUSTODY RECORD

COC # 3367-0006

REAC, Edison, NJ

Contact: Jennifer Royce

(732) 321-4200 336

WOM: 03347-143-001-3383-01

II MILAG -

EPA Contract 68-C4-0022

Project Name: Naples Truck Stop

Location: Naples, UT

Site Phone:

Page No.: ____ of ____

Lab: REAC

Contact: Charles Gasser

		110	478						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LAB#	Tag	Sample #	Location	Matrix	Collected	Container/Preservative	Analysis Requested	MS MSD	Comments
765	. Н	3367-001	Location 1	Soil	11/2/98	4 oz. sept/4 C	Volatiles	1 1	
766	H	3387-002	Location 2	Soil	11/2/98	4 oz. sept/4 C	Volatiles	Y65	ine.
767	H	3387-003	Location 3	Soil	11/2/98	4 oz. sept/4 C	Völatiles		
768	H	3387-004	Location 4	Soll	11/2/98	4 oz. sept/4 C	Volatiles		
769	Н	3387-005	Location 5	Soil	11/2/98	4 oz. sept/4 C	Volatiles		v v
770	Н	3367-006	Location 6	Soll	11/2/98	4 oz. sept/4 C	Volatiles		
77/	Н	3367-007	Fill	Soil	11/2/98	4 oz. sept/4 C	Volatiles		* *
772	H	3387-008	Field Blank	Soil	11/2/98	40 ml VOA/4 C	Volatiles	- 1	
773	Н	3387-009	Trip Blank	Soil	11/2/98	40 ml VOA/4C	Volatiles		and the second
		and was same in a	- 1 - 1 - 1	α [†] . 				4	
<u> </u>					•				
\			+						
\$ L							1		
L			- 						•
\ _								i	
{ -	- -	· · · ·					1		
\$ -	· 🕂			- 1				1	
· j	- i								· · ·
1	جست أ			3.	-		1		

Special instructions:QC ! PV

All / Araly 5:5 Junnifur Ry 11/3/16 C. Hasser

Date Time Items/Reason

C. Gassin

REFERENCE COC:

Date Received By

Date Time

		. 1	
BA		1	

CHAIN OF CUSTOD LECORD

COC # 338 x 107

et: Jenniller Rovce 321-4200 09947-149-001-9996-0 2011red 09-C4002

Project Name: Naples Truck Stop Location: Naples, UT Site Phone:

Cooler #:6363

Lab: Karneon Environmental

Contact: Clindy Arnold

r.									and the second second	
47	Teg	Safapie 4	Location	Matria	Collected	Container#Preservative	Analysis Requested	M8 MSD	Comments	-
-		3367-001	Logeton 1	BOI -	11/2/68	Ø oz glacel4 C	TPH -			
-	-c	3307-001	Location 1	Bol	11/2/98	Oz glecal4 C	Herbicides			1
-	18 -	3337-002	Logation 2	804	11/2/00	Ox glassia C	TPH			· -
1	Tc	3387-002	Location 2	Boli	1172/99	8 oz glassi4 C	Herbicidee	YES		
-	- p	3397-00g	Location 3	Boli	11/2/08	Dox glass/4 C	TPH			
-		3387-003	Location 3	BON	11/2/98	9 oz glasa/4 C	Herbicides			
-	- 18	\$307-004	Location 4	Boll	11/2/08	8 oz glase/4 C	TPH			
-		3367-004	Location 4	Boll	11/2/08	8 oz glasa/4 C	Herbicidas			
-	B	3367-006	Location 5	Boll	11/2/08	9 oz glass/4 C	TPH			
	-c-	3387-008	Location 5	Boll	11/2/98	8 oz glese/4 C	Herbicides			•
-	B -	3387-008	Location 6	Boll	11/2/98	8 oz glase/4 C	TPH		10	
-	C	3397-008	Location 6	Boli	11/2/98	6 pz glase/4 C	Herbicides			!
	- B-	3367-007	FILE	Boli	11/2/98	8 oz glasa/4 C	TPH			
-	TC-	3367-007	FI	BOU	11/2/98	8 oz glace/4 C	Herbicides		per many many constitution of the constitution	
-	TC-	\$367-006	Floki Blank	BOIL	11/2/98	8 oz glace/4 C	Herbicides	3 (1975) 377 (1975)	en en en en en en en en	
• =	-	1		<u> </u>	1			_		
-	†		+						,= ,=-	ļ
-	· 🕇 — ·									ļ
1.	-	-								
	 -		1							
** -=	-				-	المحاربين يبدر للمار ملا المساد	- (444)	organisasis om organisasis		٠.,

I instructions:

:RH

Analysis Jenny Popa 1/3/8

REFERENCE COC:

Roy F. Weston, Inc. GSA Raritan Depot Bidg. 209 Annex (Bay F) 2890 Woodbridge Avenue Edison, New Jersey 08837-3679 732-321-4200 • Fax 732-494-4021

Galson Technical Services 6601 Kirkville Road East Syracuse, NY 13057

Attn: Pam Weaver

13 October 1998

Project # 3347-143-001-3367 Naples Truck

As per Weston REAC Purchase Order number 97667, please analyze samples according to the following parameters:

Analysis/Method	Matrix	# of samples
TAL Metals plus Mo & B \ SW-846-6010 or Series 7000	Soil	6
Data package: see attached Deliverables Requirements		

Samples are expected to arrive at your laboratory on October 21, 1998. All applicable QA/QC (MS/MSD) analysis as per method, will be performed on our sample matrix. The complete data package is due 21 business days after receipt of last batch of samples. The complete data package must include all items on the deliverables checklist. Expect all samples to be difficult matrix and all raw data must be included in final analytical report.

All sample and QC(ie MS/MSD, LCS, Duplicates, and Blanks) results must be sum narized in a Quattro Pro diskette deliverable.

Please submit all reports and technical questions concerning this project to John Johnson at (732) 321-4248 or fax to (732) 321-4392. Any contractual question, please call Cynthia Lentini at (732) 321-4296.

Sincerely.

Misty Barkley

Data Validation and Report Writing Group Leader

Roy F Weston, Inc. / REAC Project

Misty Borkley

MB jj Attachments

cc R. Singhvi

H Compton

3367\non\mem\9810\sub\3367Con

V. Kansal

Subcontracting File

C. Gasser

J. Royce M. Barkley

C. Lentini

Roy F. Weston, Inc. **GSA Raritan Depot** Bldg. 209 Annex (Bay F) 2890 Woodbridge Avenue Edison, New Jersey 08837-3679 732-321-4200 • Fax 732-494-4021

Kemron Environmental Services 109 Starlite Park Marietta, OH 45750

Attn:

Cindy Arnold

4 November 1998

Project # 3347-143-001-3367 Naples Truck Stop

As per Weston REAC Purchase Order number 98389, please analyze samples according to the following parameters:

Analysis/Method	Matrix	# of samples
Herbicides\ SW-846-8151\-See compound list	Soil	6
Semivolatiles \ SW-846-8270\ See compound list	Soil	6
TPH\ Modified EPA 418.1	Soil	6
Data package: Package with Diskette Deliverable		

Samples are expected to arrive at your laboratory the week of November 2,1998. All applicable QA/QC (MS/MSD) analysis as per method, will be performed on our sample matrix. Preliminary sample result tables plus a signed copy of our Chain of Custody must be faxed to REAC 10 business days after receipt of the last samples. The complete data package is due 21 business days after receipt of last batch of samples. The complete data package must include all items on the deliverables checklist. Expect all samples to be difficult matrix and all raw data must be included in final analytical report.

ALL ORGANIC EXTRACTIONS ON SOLIDS IE: BNA, PEST/PCB MUST BE BY SOXHLET EXTRACTION

All sample and QC results(ie: MS/MSD, LCS, Duplicates and Blanks) must be summarized in a Quattro Pro diskette deliverable

Please submit all reports and technical questions concerning this project to John Johnson at (732) 321-4248 or fax to (732) 321-4392. Any contractual question, please call Cynthia Lentini at (732) 321-4296.

Sincerely.

Misty Barkley

Data Validation and Report Writing Group Leader

Roy F Weston, Inc. / REAC Project

 MB_{1l} Attachments

CC

R. Singhvi

H Compton

3367\non\mem\9811\sub\3367Con4

V. Kansal

Subcontracting File

C. Gasser

C. Lentini

J. Royce

M. Barkley

Herbicides

2,4-D 2,4-DB 2,4,5-TP Silvex 2,4,5-T Dalapon Dicamba Dichloroprop Dinoseb MCPA

Naples Truck Stop Semivolatiles

4-Nitrophenol Pentachlorophenol

Library Search
Bentazon
Chloramben
5-Hydroxydicamba

Roy F. Weston, Inc. GSA Raritan Depot Bldg. 209 Annex (Bay F) 2890 Woodbridge Avenue Edison, New Jersey 08837-3679 732-321-4200 • Fax 732-494-4021

15 December 1998

Ms. Cindy Arnold Kemron Environmental Services 109 Starlite Park Marietta, OH 45750

Dear Ms. Arnold:

During review of the total petroleum hydrocarbon/herbicide/semivolatiles data package for the Naples Truck project (Kemron Login No. L9811089), several observations were made which require clarification or additional information.

Total Petroleum Hydrocarbons

- 1. What is the basis for analyte reporting limit of 25 mg/kg? Based on the lowest calibration standard and the weight used, the RDL should be 50 mg/kg.
- 2. What is the concentration of spike solution ES 26-04?

Herbicides

- 1. What is the concentration of each analyte in the various calibration solutions used (\$38-16, \$35-01) and in the spike solution (ES 25-02) used for the LCS and MS/MSD samples. Also include the preparation dates for these solutions.
- 2. What is the basis for the herbicide reporting limits? If MDL study, please provide information.
- 3. Why is the NA qualifier used for MCPP hits on the raw data quant report pages for samples L9811089-01, -08, and -09? MCPP appears to be above the low end of the calibration range. RL is higher for MCPP?

Semivolatiles

- 1. Results not reported for sample L9811089-10. Sample does not appear on extraction log. Please explain.
- 2. What is the basis for the reporting limits? In the QC summary tables the blank reporting limits are 500 μ g/kg and in the results tables all sample reporting limits are 16-17 μ g/kg. Also, the dilutions are listed as 3 in the final results tables, but are listed as 1 on the analysis runlogs. Please explain.

Your prompt attention will be appreciated. We request response within two days of fax receipt of this letter. If you should have any questions concerning the above, you may contact our reviewer for this project, Joe Tomaszewicz, at 732-321-4297.

Sincerely

Misty Barkley

Data Validation and Report Writing Group Leader (10)5-

Roy F. Weston, Inc./REAC Project

APPENDIX B
Final Agronomic Results
Naples Truck Stop Site
Final Report
April 1999

Roy F. Weston, Inc. GSA Raritan Depot Bidg. 209 Annex (Bay F) 2890 Woodbridge Avenue Edison, New Jersey 08837-3679 732-321-4200 • Fax 732-494-4021

DATE:

11/17/98

TO:

R. Singhvi, ERTC/EPA

FROM:

Misty Barkley, Data Validation and Report Writing Group Leader M

SUBJECT:

Preliminary Results of Project Naples Truck WA# 3367

Attached please find the preliminary results of the above referenced project for the following samples.

Chain of Custody No.

Analyses

3367-0002

7 soil samples for TOC, % Moisture, Soluable salts, Mn, Zn, and Cu.

These samples are identified on the chain of custody as Agronomic II. There will be no QA/QC done on this data so these results should be considered as final.

cc:

Archives

Subcontracting Misty Barkley

WAM: M. Sprenger/ H. Compton

Task Leader: J. Royce

November 13, 1998

John Johnson Weston-REAC 2890 Woodbridge Ave Edison, NJ 08837

SOIL TEST RESULTS

Sample	Lab	*Total	Total	Moisture		**Available	
Id	No	Soluble Salts	Carbon	(%)	Mn	Cu	Zn
"		(mmhos/cm)	(%)	`		ug/g	
3367-001	5682	.58	2.33	14.2	6.712	0.375	3.443
3367-002	5683	.93	1.72	11.6	25.25	0.995	1.531
3367-003	5684	1.17	3.17	8.6	5.424	0.463	0.794
3367-004	5685	.97	2.60	13.0	5.582	0.263	0.677
3367-005	5686	.65	2.31	10.6	2.523	0.343	0.635
3367-006	5687	.21	1.30	7.6	77.28	1.099	1.508
3367-007	5688	.36	1.01	6.6	25	0.487	1.13

^{1:5} Soil:Water
Mehlich 3

Conductance (mmhos/cm)	Effects
<0.40	Salinity effects mostly negligible, excepting possibly beans and carrots.
0.40-0.80	Very slightly saline; but yields of very salt sensitive crops such as flax, clovers (alsike, red), carrots, onions, bell peppers, lettuce, sweet potatoes may be reduced by 25 to 50%.
0.81-1.20	Moderately saline. Yield of salt-sensitive crops restricted. Seedlings may be injured. Satisfactory for well drained greenhouse soils. Crop yields reduced by 25 to 50% may include broccoli and potato plus the other plants above.
1.21-1.60	Saline soils. Crops tolerant include cotton, alfalfa, cereals, grain sorghum, sugar beets, bermuda grass, tall wheat grass and Harding grass. Salinity higher than desirable for greenhouse soils.
1.61-3.20	Strongly saline. Only salt-tolerant crops yield satisfactory. For greenhouse crops leach soil with enough water so that 2-4 quarts (2-4 L) pass through each square foot (0.1 m ²) of bench area, or one pint of water (0.5 L) per 6 inch (15 cm) pot; repeat after 1 hour. Repeat again if readings are still in the high range.
>3.2	Very strongly saline. Only salt-tolerant grasses, herbaceous plants, certain shrubs and trees will grow.

^{*2:1} Water:Soil ratio

USEPA ERI

CHAIN OF CUSTODY RECORD

COC # 3387-0002

REAC, Edleon, NJ Contact: Jennifer Royce (752) 321-4200 WOR 03347-143-001-3200-01 EPA Contract 68-C4-0222

Project Name: Naples Truck Stop Location: Naples, UT

Site Phone:

Page No.:_

Cooler #:

Lab: Penn State

Contect: Ann Wolf

	Tag	Satuple #	Location	Matrix	Collected	Container/Preservative	Analysis Requested	M8 M8D	Commente
	<u> </u>	3367-001	Location 1	8ol -	11/2/06	8 oz glase/4 C	Agronomics II		
 .	<u> </u>	3367-002	Location 2	Boll		B oz glaso/4 C	Agronomice II		
	A	3367-003	Location 3	Boll -	_ • .	8 oz glase/4 C	Agronomics II	-	
		3367-004	Location 4	Boil		8 oz glass/4 C	Agronomics II	-	
·		3367-006	Location 5	Boll	i	8 oz glage/4 C	Agronomics II		
	[A	3367-006	Location 6	Boli	:	6 oz glase/4 C	Agronomice II		<u></u>
	A - -	3367-007	Fu	Soll	i	8 oz glase/4 C	Agronomice II	;	
	Ţ - -		<u> </u>				to an in the second of the sec	-,	
			-					_	
-	†	-	+						
	†						ļ		
					4 1				
	- -		+		4				
			+					- -	
			-					- } +	
	+		-				₱₱ ₱₱ ₱₱ ₱₽ ₽₽ ₽₽ ₽₽ ₽₽	- +	
			<u> </u>					- +	
								 - -	
			<u> </u>		7 1				
-					7 1	The series when dente with the way was a		-	.
			T	·	7 1	والمنت يتدا المن المنت يتدا المنت المنت			
	ctions			·	-	المنتورين بياست عبد منيواست	for the second of the second o		

| Relinquished By | Date | Received By | Date | Received By | Date | Time | Remained By | Date | Received By | Date | Time | Remained By | Date | Time | Remained By | Date | Received By | Date | Time | Remained By | Date | Received By | Date | Time | Remained By | Date | Received By | Date | Time | Remained By | Date | Received By | Date | Time | Remained By | Date | Received By | Date | Time | Remained By | Date | Received By | Date | Time | Remained By | Date | Received By | Date | Time | Remained By | Date | Received By | Date | Time | Remained By | Date | Received By | Date | Time | Remained By | Date | Received By | Date | Time | Remained By | Date | Received By | Date | Time | Remained By | Date | Received By | Date | Time | Remained By | Date | Received By | Date | Rec

Roy F. Weston, Inc. GSA Raritan Depot Bidg. 209 Armex (Bay F) 2890 Woodbridge Avenue Edison, New Jersey 08837-3679 732-321-4200 • Fax 732-494-4021

DATE:

12/01/98

TO:

R. Singhvi, ERTC/EPA

FROM:

Misty Barkley, Data Validation and Report Writing Group Leader

SUBJECT:

Preliminary Results of Project Naples Truck Stop WA# 3367

Attached please find the preliminary results of the above referenced project for the following samples.

Chain of Custody No.

<u>Analyses</u>

3367-0001

7 soil samples for Av. PO4, Cl, B, SO4, pH, Lime requirement, TKN, Ammonia, Nitrate, Nitrite, Grain Size, and Specific Gravity.

These samples are listed on the chain of custody as Agronomic I. There will be no QA\QC done on this data so these results can be considered as final.

cc:

Archives

Subcontracting Misty Barkley

WAM: H. Compton Task Leader: J. Royce $f_{ij}^{a}h_{ij}$

A & L EASTERN AGRICULTURAL LABORATORIES, INC.

7621 Whitepine Road • Richmond, Virginia 23237-2296 • Phone: 804-743-9401 • Fax: 804-271-6446

WO# 03347-143-001-3367-01 Project Name: Naples Truck Stop EPA Contract 66-C4-0022

Roy F Weston Inc. Bldg 209 Annex (Bay F) 2890 Woodbridge Ave. Edison NJ 08837-3679

Report Number R310-001 11/23/98

Control of the Contro

Page 1

Customer Sample Number	Lab <u>Number</u>	Available Phosphorus <u>mg/kq</u>	Chloride mg/kg	Boron ma/ka	Sulfate- S mg/kg	Soil pH	SMP Buffer pH	Lime Requirement Ton/Acre
3367-001	6841	9	137	8.0	373	8.0	N.A.	0.0
-	6842	22	131	2.3	943	8.0	N.A.	0.0
3367-002		7	162	2.0	1056	8.1	N.A.	0.0
3367-003	6843	,				-	N.A.	0.0
3367-004	68 44	8	38	3.0	807	8.2		_
3367-005	6845	11	25	1.8	419	8.1	N.A.	0.0
-			20	0.6	15	8.3	N.A.	0.0
3367-006	6846	85		_				0.0
3367-007	6847	14	111	0.3	99	8.4	N.A.	0.0

N.A.: No SMP Buffer pH for soil pH greater than 7.0 Lime requirement to soil pH 7.0

Δ	nal	VS	is
_	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		••

Methodology

Mehlich 3

Available Phosphorus

Chloride

Method of Soil Analysis 26-3.5

Boron

Hot water extraction

Sulfate-S

Acidified ammonium acetate extraction

Soil pH

SW846-9045C

SMP Buffer pH

Method of Soil Analysis 12-3.4.4

Lime Requirement

Method of Soil Analysis 12-3.4.4.5

A & L EASTERN AGRICULTURAL LABORATORIES, INC.

7621 Whitepine Road • Richmond, Virginia 23237-2296 • Phone: 804-743-9401 • Fax: 804-271-6446

WO# 03347-143-001-3367-01 Project Name: Naples Truck Stop EPA Contract 66-C4-0022 Roy F Weston Inc. Bldg 209 Annex (Bay F) 2890 Woodbridge Ave. Edison NJ 08837-3679 Report Number R310-001 11/23/98

Page 2

į	Customer				Nitrate-	Nitrite-					
	Sample	Lab	TKN	Ammonia-N	N	N	<u>%_</u>		<u>%_</u>	<u>Texture</u>	Specific
j	Number	Number	mg/kg	mg/kg	mg/kg	mg/kg	Sand	%Silt	Clay	<u>Class</u>	Gravity
J	3367-001	6841	200	12.5	5	0.01	68	12	20	Sandy Loam	2.611
ı.	3367-001	6842	200	2.9	16	<0.01	52	44	4	Sandy Loam	2.381
1	3367-002	6843	200	2.6	1	<0.01	52	44	4	Sandy Loam	2.405
ľ	3367-603 3367-604	6844	200	1.8	13	<0.01	60	36	4	Sandy Loam	2.502
5	3367-005	6845	200	2.1	13	0.03	58	36	6	Sandy Loam	2.545
	3367-005	6846	400	2.3	2	0.12	60	26	14	Sandy Loam	2.564
V	33 67-007	6847	200	1.5	3	0.02	76	12	12	Sandy Loam	2.573

Analysis	Methodology
TKN	EPA 351.3
Ammonia-N	EPA 350.1
Nitrate-N	EPA 353.2
Nitrite-N	EPA 354.1
% Sand	USDA
⊾ %Silt	USDA
% Clay	USDA
Texture Class	USDA
Specific Gravity	ASTM D-854
•	

clusive and confidential use of our clients and may not be reproduced in whole or in part, nor may any reference be made

		_
	epa	
-		

CHAIN OF CUSTODY RECORD

COC # 3367-0001

REAC, Edison, NJ Contact: Jenniter Royce (732) 321-4200 Wolf 03347-143-001-8889-01 EPA Contract (88-04-002)

Project Name: Naples Truck Stop Location: Naples, UT

Ske Phone:

Page No.: ____of ___

Cooler #:0093

Lab: A & L Esstern Agricultural Lab

Contact: Paul Chu

ART '	Tag	Sample #	Locati	on # of	Matrix	Collected	Container/Preservative	Analysis Requested	M8 M8D	Comment
-	*P	3567-001 T	Location 1	- Couton	Soli —	11/2/00	32 oz glese/4 C	Agronomice I	- +	
4	F	3367-002	Location 2		80I	11/2/06	32 oz glese/4 C	Agranamics I	+	
•	TF	3367-003	Location 3	12	Soll	11/2/98	32 oz glase/4 C	Agronomics I		
	P -	3367-004	Location 4	2	80H		32 oz glase/4 C	Agronomics I		
	F -	\$367-00s	Location &	ーラ	801	.	32 oz glase/4 C	Agronomics I	+	
	F	3387-008	Location 6	2	Soli -	- 1	32 oz glase/4 C	Agronomica I	+	
-	F	3367-007	FII	2	Soli -		32 oz glesel/i C	Agronomics I	- 	
	<u> </u>	1		. - 🚾	-		Table Tabl	the many term was many term with the	- - -	
			+	·	-		 		- - - <u>-</u>	
	†		+	-	-	-		+	-	
	† - -	1		-	-	-				
	†	1	+	-	+	-	<u></u>		+	
	†	1	†		+	-				
-	†	1	+		 				+	
	†	 	+	· - -	+				-	
	† — —	!	+	·	1	-		 		
	 		+		-					
	†			· ·	-	-			_	
	† + =		+	·			 			
سنند	-		+	·	-	4	 			
	<u>.</u>	:	<u> </u>	. L	1	1	8 9 9		_	
d Instru	ations:	•	MN, Available P, Built				reference coc			

Benny Reason Relinquistred by Date Received by Date Time Items/Reason Relinquistred by Date Received by Date Time

AND AND AND SUPPLIES STATE ST

Roy F. Weston, Inc.
GSA Raritan Depot
Bidg. 209 Annex (Bay F)
2890 Woodbridge Avenue
Edison, New Jersey 08837-3679
732-321-4200 • Fax 732-494-4021

DATE:

11/19/98

TO:

R. Singhvi, ERTC/EPA

FROM:

Misty Barkley, Data Validation and Report Writing Group Leader

SUBJECT:

Preliminary Results of Project Naples Truck WA# 3367

Attached please find the preliminary results of the above referenced project for the following samples.

Chain of Custody No.

<u>Analyses</u>

3367-0002

7 soil samples for Macronutrients, pH, CEC.

These samples are identified on the chain of custody as Agronomic II. There will be no QA/QC done on this data so these results should be considered as final.

cc:

Archives

Subcontracting Misty Barkley

WAM: M. Sprenger/ H. Compton

Task Leader: J. Royce

11/10/98 5682 103367 OUT OF STATE 00 336701 UNSPECIFIED
DATE LAB NO. SERIAL NO. COURTY ACRES FIELD SOIL

AGRICULTURAL AMALYTICAL SERVICES LABORATORY
COLLEGE OF AGRICULTURAL SCIENCES
THE PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PA 16802
(814 863-0841)

SOIL TEST REPORT FOR

JOHN JOHNSON 2890 WOODBRIDGE AVE EDISON NJ

08837

COPY SENT TO:

JENNIFER ROYCE 2890 WOODBRIDGE AVE

EDISON NJ

08837

SOIL NUTRIENT LEVELS:		LOW	MEDIUM	HIGH	EKCESSI VE
Soil pH		XXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXX	
Phosphate (P2Os)		X			
Potash (KgO)		XXX			
Magnesium (MgO)		1		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Maria Cara Cara Cara Cara Cara Cara Cara
Calcium (CaO)		XXXXXXXXXXXX			
RECOMMENDATIONS FOR:	UNSPECIFIED	GARDEN CROP	MG AND CALC	CIUM ADJUSTMENT	See Back For Commer
	JUSTMENT LOO SQ.FT.	(MgSO4 EPSOM S) NONE		1,2
CALCITIC LIMESTONE (0-3% MG)	IONE	(CaSO4) GYPSUM	NONE		3,5
PLANT NUTRIENT	5-10-10	5-	10-5	10-10-10	
NEEDS: LBS/100 SQ.FT.	2.5	+	HONE +	NONE	7
	0-46-0	0-	0-60	UREA	
	1.0	+	NONE +	NONE	

MESSAGES:

- IF SCIL PH IN LABORATORY RESULTS IS GREATER THAN 6.5, USE SULFUR (SEE TABLE ON BACK) TO LOWER PH TO OPTIMUM LEVEL OF 6.5.
- THE ABOVE LIME AND FERTILIZER RECOMMENDATIONS ARE FOR THIS SOIL SAMPLE AND THIS SEASON ONLY PLANT NUTRIENT RECOMMENDATIONS ARE FOR FERTILIZERS CONTAINING SPECIFIC RATIOS OF NITROGEN (N), PHOSPHATE (P205) AND POTASH (K20). AS AN EXAMPLE 5-10-10 CONTAINS 5% N. 10% P205, AND 10% K20. IF FERTILIZERS WITH THE RATIOS SHOWN ARE NOT AVAILABLE. CONTACT YOUR LOCAL GARDEN CENTER OR FERTILIZER SUPPLIER FOR THE APPROPRIATE SUBSTITUTION.

LABORATOR	Y RESULTS:		· · · · · · · · · · · · · · · · · · ·	•	1.			1 1		
8. C	2	0.0	0.21	8.0	75.0	23.2	0.9	34.2	64.6	
SOIL pH	P 1b/A	ACIDITY	K	Mg	Ca	CEC	K	Mg	Ca	
•	<u>†</u>	EXCHAN	IGEABLE (CATIONS	(meq/100	g)	*	SATURATIO	OM	

COMMENTS

- To be most effective, all recommended limestone and/or fertilizer should be incorporated 6
 to 8 inches into the soil prior to planting. If plants or crop is established, apply
 recommended materials to the surface and water area well.
- If 11 to 20 pounds of limestone are recommended, divide the amount by two and apply in two applications six months apart. If 21 or more pounds are recommended, divide the amount by three and make three applications at six month intervals.
- 3. If 3 or more pounds of MgSO4 (Epsom saits) are recommended, divide the amount by two and make separate applications at four month intervals. If an alternative magnesium source is used, apply an amount equal to the equivalent of 10.5% Mg in MgSO4; ONLY ONE APPLICATION should be needed.
- 4. When CEC is less than 15 (see laboratory results on front) add one inch of organic matter.

 If pH is greater than 7, use acid peat moss as the organic matter source.
- 5. Lime and fertilizer are recommended in pounds of material per each 100 square feet of area sto be treated. Use the following conversions to convert from pounds per 100 square feet to other units or area sizes:

pounds per 100 sq. ft. \times 10 = pounds per 1000 sq. ft. pounds per 100 sq. ft. \times 435 = pounds per acre

6. Amount of sulfer needed to lower soil pH to optimum level.

(See front of FROM	report for soil pH a	ind optimum pH) SULFUR	FROM	то	SULFUR
CURRENT	OPTIUM	(lb/100 sq ft)	CURRENT	OPTIUM	(lb/100 sq ft)
SOIL PH	SOIL PH		SOIL PH	SOIL PH	
8.0	7.5	0.50	7.0	6.5	0.75
	7.0	1.00		6.0	1.25
	6.5	2.00		5.5	2.50
	6.0	3.00			
	5.5	4.00			
7.5	7.0	0.75	6.5	6.0	1.00
	6.5	1.25		5.5	1.75
	6.0	2.50			
	5.5	3.50	6.0	5.5	1.50

Apply sulfur at the above rates for a loam soil. On heavier soil (silt loams) use one third more than the amount shown. On lighter soils (sandy loams) use one-half of the amounts shown. If aluminum or ferrous sulfate is used to lower pH, multiply the above amounts by 2.5. Follow the same suggestions as above for soil types. If 4 or more pounds are needed, divide the amount in half and make two applications six months apart.

7 There is no reliable test for evaluating the amount of nitrogen (N) in soils that is available to crops over the growing season. The N recommended is based on the actual N that needs to be supplied annually to ensure optimum crop growth.

11/10/98 5683 103368 OUT OF STATE 00 336702 UNSPECIFIED
DATE LAB BO. SERIAL BO. COUNTY ACRES FIELD SOIL

AGRICULTURAL ANALYTICAL SERVICES LABORATORY COLLEGE OF AGRICULTURAL SCIENCES THE PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PA 16802 (814 863-0841)

SOIL TEST REPORT FOR

JOHN JOHNSON 2890 WOODBRIDGE AVE

EDISON NJ

08837

COPY SENT TO:

JENNIFER ROYCE 2890 WOODBRIDGE AVE

EDISON NJ

08837

SOIL NUTRIENT LEVELS:		KEDIDM HIGH	EXCESSIVE EXXXXXX
Phosphate (P ₂ O ₅)	X		
Potash (K ₂ O) Magnesium (MgO)	XXXXXXX	BEKKKIKKEKKIKEKKKKKKKKKK	
Magnesium (MgO) Calcium (CaO)	XXXXXXXXXX		
Calcium			
RECOMMENDATIONS FOR: UNSPECIF	ED GARDEN CROP MG	AND CALCIUM ADJUSTMENT LB/100 SQ.FT.	See Back For Comments
PH ADJUSTMENT LB/100 SQ.FT.	(MgSO4) EPSOM SALTS	NONE	1,2
CALCITIC LIMESTONE (0-3% MG)	(CaSO4) GYPSUM	NONE	3,5
PLANT NUTRIENT 5-10-10 NEEDS: LBS/100 SQ.FT. 2.5	5-10-5 + NONE	10-10-10 + NONE	7
0-46-0	0-0-60 + NDNE	UREA NONE	

MESSAGES:

- IF SOIL PH IN LABORATORY RESULTS IS GREATER THAN 6.5, USE SULFUR (SEE TABLE ON BACK) TO LOWER PH TO OPTIMUM LEVEL OF 6.5.
- THE ABOVE LIME AND FERTILIZER RECOMMENDATIONS ARE FOR THIS SOIL SAMPLE AND THIS SEASON ONLY. PLANT NUTRIENT RECOMMENDATIONS ARE FOR FERTILIZERS CONTAINING SPECIFIC RATIOS OF NITROGEN (N). PHOSPHATE (P205) AND POTASH (K20). AS AN EXAMPLE 5-10-10 CONTAINS 5% N. 10% P205, AND 10% K20. IF FERTILIZERS WITH THE RATIOS SHOWN ARE NCT AVAILABLE. CONTACT YOUR LOCAL GARDEN CENTER OR FERTILIZER SUPPLIER FOR THE APPROPRIATE SUBSTITUTION.

LABORATOR	Y RESULTS:						1	· · · · · ·	
e.c	2	0.0	0.44	8.4	75.0	23.8	1.8	35.3	63.0
SOIL pH	P 1b/A	ACIDITY	K	Mg	Ca	CEC	K	Mg	Ca
•		EXCHAN	IGEABLE (CATIONS	% SATURATION				

OTHER TESTS:

COMMENTS

- To be most effective, all recommended limestone and/or fertilizer should be incorporated 6
 to 8 inches into the soil prior to planting. If plants or crop is established, apply
 recommended materials to the surface and water area well.
- If 11 to 20 pounds of limestone are recommended, divide the amount by two and apply in two applications six months apart. If 21 or more pounds are recommended, divide the amount by three and make three applications at six month intervals.
- 3. If 3 or more pounds of MgS04 (Epsom salts) are recommended, divide the amount by two and make separate applications at four month intervals. If an alternative magnesium source is used, apply an amount equal to the equivalent of 10.5% Mg in MgS04; ONLY ONE APPLICATION should be needed.
- 4. When CEC is less than 15 (see laboratory results on front) add one inch of organic matter.

 If pH is greater than 7, use acid peat moss as the organic matter source.
- 5. Lime and fertilizer are recommended in pounds of material per each 100 square feet of area 16 be treated. Use the following conversions to convert from pounds per 100 square feet to other units or area sizes:

pounds per 100 sq. ft. x 10 = pounds per 1000 sq. ft. pounds per 100 sq. ft. x 435 = pounds per acre

6. Amount of sulfer needed to lower soil pH to optimum level.

(See front of report for soil pH and optimum pH)

FROM	TO	SULFUR	FROM	TO	SULFUR
CURRENT	OPTIUM	(lb/100 sq ft)	CURRENT	OPTIUM	(lb/100 sq ft)
SOIL PH	SOIL PH		SOIL PH	SOIL PH	
8.0	7.5	0.50	7.0	6.5	0.75
	7.0	1.00		6.0	1.25
	6.5	2.00		5.5	2.50
	6.0	3.00			
	5.5	4.00			
7.5	7.0	0.75	6.5	6.0	1.00
	6.5	1.25		5.5	1.75
	6.0	2.50			
	5. 5	3.50	6.0	5.5	1.50

Apply sulfur at the above rates for a loam soil. On heavier soil (silt loams) use one third more than the amount shown. On lighter soils (sandy loams) use one—half of the amounts shown. If aluminum or ferrous sulfate is used to lower pH, multiply the above amounts by 2.5. Follow the same suggestions as above for soil types. If 4 or more pounds are needed, divide the amount in half and make two applications six months apart.

There is no reliable test for evaluating the amount of nitrogen (N) in soils that is available to crops over the growing season. The N recommended is based on the actual N that needs to be supplied annually to ensure optimum crop growth.

The second of th UNSPECIFIED 336703 00 OUT OF STATE 103369 11/10/98 5584 SOIL FIELD ACRES COUNTY SERIAL MO. LAB MO. DATE

AGRICULTURAL AMALYTICAL SERVICES LABORATORY COLLEGE OF AGRICULTURAL SCIENCES THE PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PA 16802 (814 863-0841)

SOIL TEST REPORT FOR

JOHN JOHNSON 2890 WOODBRIDGE AVE EDISON NJ

08837

COPY SENT TO:

JENNIFER ROYCE 2890 WOODBRIDGE AVE

EDISON NJ

08837

SOIL NUTRIENT LEVELS:		LOW		MEDIUM	HIGH	EXCESSIVE
Soil pH		XXXXXX	XXXXXXXXXXXX	XXXXXXXXX	COCCURROCCCOOK	CONTROL STREET
Phosphate (P2Os)		X				
Potash (K ₂ O)		XXXXXX				
Magnesium (MgO)		1	000000000	XXXXXXXX	PYGGGGGGGGGGGGGGGG	AZZAAR
Calcium (CaO)		XXX				
RECOMMENDATIONS FOR	UNSPECIFIED	GARDEN	CROP MG	AND CALC	IUM ADJUSTMENT	See Back
VECOMMISSERED A LIGHT LOS	0.10, 201, 110	4,0,00		LB/10	O SQ.FT.	For Comments
	ADJUSTMENT		gSO4) Om Salts	NONE		1,2
CALCITIC	_	(Ca	SO4)			
LIMESTONE (0-3% MG)	NONE	GYF	PSUM	NONE		3,5
					•	
PLANT NUTRIENT	5-10-10		5-10-5		10-10-10	
NEEDS: LBS/100 SQ.FT.	2.5] + [NONE	_ +	NONE	7
	0-46-0		0-0-60		UREA	
		ר ר			NONE	
	1.0	+	NONE	+	NUNE	1
MESSAGES:		•				

- IF SOIL PH IN LABORATORY RESULTS IS GREATER THAN 6.5, USE SULFUR (SEE TABLE ON BACK) TO LOWER PH TO OPTIMUM LEVEL OF 6.5.
- . THE ABOVE LIME AND FERTILIZER RECOMMENDATIONS ARE FOR THIS SOIL SAMPLE AND THIS SEASON ONLY. PLANT NUTRIENT RECOMMENDATIONS ARE FOR FERTILIZERS CONTAINING SPECIFIC RATIOS OF NITROGEN (N). PHOSPHATE (P205) AND POTASH (K20). AS AN EXAMPLE 5-10-10 CONTAINS 5% N. 10% P205, AND 10% K20. IF FERTILIZERS WITH THE RATIOS SHOWN ARE NO AVAILABLE, CONTACT YOUR LOCAL GARDEN CENTER OR FERTILIZER SUPPLIER FOR THE APPROPRIATE SUBSTITUTION. 7 MARIE

LABORATOR	Y RESULTS:									
6.1	2	0.0	0.38	10.7	75.0	26.0	1.4	41.0	57.6	
SOIL PH	P 1b/A	ACIDITY	K	Mg	Ca	CEC	K	Mg	Ca	
•		EXCHA	IGEABLE (CATIONS	(meq/100	g)	8	SATURATI	OM	

COMMENTS

- To be most effective, all recommended limestone and/or fertilizer should be incorporated 6
 to 8 inches into the soil prior to planting. If plants or crop is established, apply
 recommended materials to the surface and water area well.
- If 11 to 20 pounds of limestone are recommended, divide the amount by two and apply in two applications six months apart. If 21 or more pounds are recommended, divide the amount by three and make three applications at six month intervals.
- 3. If 3 or more pounds of MgS04 (Epsom salts) are recommended, divide the amount by two and make separate applications at four month intervals. If an alternative magnesium source is used, apply an amount equal to the equivalent of 10.5% Mg in MgS04; ONLY ONE APPLICATION should be needed.
- 4. When CEC is less than 15 (see laboratory results on front) add one inch of organic matter.

 If pH is greater than 7, use acid peat moss as the organic matter source.
- 5. Lime and fertilizer are recommended in pounds of material per each 100 square feet of area ato be treated. Use the following conversions to convert from pounds per 100 square feet to other units or area sizes:

pounds per 100 sq. ft. x 10 = pounds per 1000 sq. ft. pounds per 100 sq. ft. x 435 = pounds per acre

6. Amount of sulfer needed to lower soil pH to optimum level.

(See front of FROM	report for soil pH a	and optimum pH) SULFUR	FROM	то	SULFUR
CURRENT	OPTIUM	(ib/100 sq ft)	CURRENT	OPTIUM	(lb/100 sq ft)
SOIL PH	SOIL PH		SOIL PH	SOIL PH	
8.0	7.5	0.50	7.0	6.5	0.75
	7.0	1.00		6.0	1.25
	6.5	2.00		5.5	2.50
	6.0	3.00			
	5.5	4.00			
7.5	7.0	0.75	6.5	6.0	1.00
	6.5	1.25		5.5	1.75
	6.0	2.50			
	5.5	3.50	6.0	5.5	1.50

Apply sulfur at the above rates for a loam soil. On heavier soil (silt loams) use one third more than the amount shown. On lighter soils (sandy loams) use one-half of the amounts shown. If aluminum or ferrous sulfate is used to lower pH, multiply the above amounts by 2.5. Follow the same suggestions as above for soil types. If 4 or more pounds are needed, divide the amount in half and make two applications six months apart.

There is no reliable test for evaluating the amount of nitrogen (N) in soils that is available to crops over the growing season. The N recommended is based on the actual N that needs to be supplied annually to ensure optimum crop growth.

11/10/98 5685 103370 OUT OF STATE OO 336704 UNSPECIFIED
DATE LAB NO. SERIAL NO. COUNTY ACRES FIELD SOIL

AGRICULTURAL ANALYTICAL SERVICES LABORATORY COLLEGE OF AGRICULTURAL SCIENCES THE PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PA 16802 (814 863-0841)

SOIL TEST REPORT FOR:

JOHN JOHNSON 2890 WOODBRIDGE AVE

EDISON NJ

08837

COPY SENT TO:

JENNIFER ROYCE 2890 WOODBRIDGE AVE

EDISON NJ

08837

SOIL NUTTRIENT LEVELS	LOW	MEDIUM: HIGH	EXCESSIVE
Soil pH	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	KONGO SKALIK
Phosphate (P2O5)	X 🛞		
Potash (KgO)	X		
Magnesium (MgO)	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	4
Calcium (CaO)	XXXXXXXX		
	**************************************		See Back
RECOMMENDATIONS FOR: UNSPECIFIED	GARDEN CRUP MG	AND CALCIUM ADJUSTMENT LB/100 SQ.FT.	For Comments
PH ADJUSTMENT	(MgSO4) EPSOM SALTS	NONE	1,2
LB/100 SQ.FT.			
CALCITIC	1 (CaSO4)		
LIMESTONE NONE	GYPSUM	NONE	3,5
(0-3% MG)	j		
		·	
		10-10-10	1
PLANT NUTRIENT 5-10-10	5-10-5	10-10-10	ľ
NEEDS: 2.5	+ NONE	+ NONE	7
LBS/100 SQ.FT. 2.9			
0-46-0	0-0-60	UREA	
	NONE	NONE	
1.0	+ ""	+ 110112	

MESSAGES:

- IF SOIL PH IN LABORATORY RESULTS IS GREATER THAN 6.5, USE SULFUR (SEE TABLE ON BACK) TO LOWER PH TO OPTIMUM LEVEL OF 6.5.
- THE ABOVE LIME AND FERTILIZER RECOMMENDATIONS ARE FOR THIS SOIL SAMPLE AND THIS SEASON DNLY. PLANT NUTRIENT RECOMMENDATIONS ARE FOR FERTILIZERS CONTAINING SPECIFIC RATIOS OF NITROGEN (N). PHOSPHATE (P205) AND POTASH (K20). AS AN EXAMPLE 5-10-10 CONTAINS 5% N, 10% P205, AND 10% K20. IF FERTILIZERS WITH THE RATIOS SHOWN ARE NCT AVAILABLE. CONTACT YOUR LOCAL GARDEN CENTER OR FERTILIZER SUPPLIER FOR THE APPROPRIATE SUBSTITUTION.

LABORATOR	Y RESULTS:									
6.2	2	0.0	0.07	8.9	75.0	23.9	0.2	37.0	62.7	
SOIL pH	P lb/A	ACIDITY	K	Mg	Ca	CEC	K	Mg	Ca	1
		EXCHA	EXCHANGEABLE CATIONS (meq/100 g)					% SATURATION		

1.111

COMMENTS

CHANGE TO !!

- To be most effective, all recommended limestone and/or fertilizer should be incorporated 6
 to 8 inches into the soil prior to planting. If plants or crop is established, apply
 recommended materials to the surface and water area well.
- If 11 to 20 pounds of limestone are recommended, divide the amount by two and apply in two applications six months apart. If 21 or more pounds are recommended, divide the amount by three and make three applications at six month intervals.
- 3. If 3 or more pounds of MgSO4 (Epsom salts) are recommended, divide the amount by two and make separate applications at four month intervals. If an alternative magnesium source is used, apply an amount equal to the equivalent of 10.5% Mg in MgSO4; ONLY ONE APPLICATION should be needed.
- When CEC is less than 15 (see laboratory results on front) add one inch of organic matter.
 If pH is greater than 7, use said peat moss as the organic matter source.
- 5. Lime and fertilizer are recommended in pounds of material per each 100 square feet of area to be treated. Use the following conversions to convert from pounds per 100 square feet to other units or area sizes:

pounds per 100 sq. ft. x 10 = pounds per 1000 sq. ft. pounds per 100 sq. ft. x 435 = pounds per acre

6. Amount of sulfer needed to lower soil pH to optimum level.

(See front of FROM	report for soil pH a	and optimum pH) SULFUR	FROM	то	SULFUR
CURRENT	OPTIUM	(lb/100 sq ft)	CURRENT	OPTIUM	(ib/100 sq ft)
SOIL PH	SOIL PH		SOIL PH	SOIL PH	
8.0	7.5	0.50	7.0	6.5	0.75
	7.0	1.00		6.0	1.25
	6.5	2.00		5.5	2.50
	6.0	3.00			
	5.5	4.00			
7.5	7.0	0.75	6.5	6.0	1.00
	6.5	1.25		5.5	1.75
	6.0	2.50			
	5.5	3.50	6.0	5.5	1.50

Application at the above rates for a loam soil. On heavier soil (silt loams) use one third more than the amount shown. On lighter soils (sandy loams) use one—half of the amounts shown. If aluminum or ferrous sulfate is used to lower pH, multiply the above amounts by 2.5. Follow the same suggestions as above for soil types. If 4 or more pounds are needed, divide the amount in half and make two applications six months apart.

There is no reliable test for evaluating the amount of nitrogen (N) in soils that is available to crops over the growing season. The N recommended is based on the actual N that needs to be supplied annually to ensure optimum crop growth.

AGRICULTURAL ANALYTICAL SERVICES LABORATORY COLLEGE OF AGRICULTURAL SCIENCES THE PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PA 16802 (814 863-0841)

SOIL TEST REPORT FOR:

JOHN JOHNSON 2890 WOODBRIDGE AVE

EDISON NJ

08837

COPY SENT TO:

JENNIFER ROYCE 2890 WOODBRIDGE AVE

EDISON NJ

08837

SOIL NUTRIENT LEVELS	LOW	MEDIUM BIGH	EXCESSIVE
Soil pH	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXIOCIOXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	EUCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
Phosphate (P2O5)	lx ⊗		
Potash (KgO)	XX S		
Magnesium (MgO)	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	CONT.
Calcium (CaO)	XXXXX		
RECOMMENDATIONS FOR UNSPECTFIED	GARDEN CROP MG	AND CALCIUM ADJUSTMENT LB/100 SQ.FT.	See Back For Comments
PH ADJUSTMENT	(MGSO4) EPSOM SALTS	NONE	1,2
LB/100 SQ.FT.			
0.01.01.01	(CaSO4)		
CALCITIC LIMESTONE NONE	GYPSUM	NONE	3,5
(D-3% MG)			
			İ
			İ
5-10-10	5-10-5	10-10-10	
PLANT NUTRIENT	ا 		
NEEDS: LBS/100 SQ.FT. 2.5	+ NONE	+ NONE	7
0-46-0	0-0-60	UREA	
] wour	MONE	
1.0	+ NONE	+ NONE	
	J		

MESSAGES

- IF SOIL PH IN LABORATORY RESULTS IS GREATER THAN 6.5, USE SULFUR (SEE TABLE ON BACK) TO LOWER PH TO OPTIMUM LEVEL OF 6.5.
- THE ABOVE LIME AND FERTILIZER RECOMMENDATIONS ARE FOR THIS SOIL SAMPLE AND THIS SEASON ONLY. PLANT NUTRIENT RECOMMENDATIONS ARE FOR FERTILIZERS CONTAINING SPECIFIC RATIOS OF NITROGEN (N). PHOSPHATE (P205) AND POTASH (K20). AS AN EXAMPLE 5-10-10 CONTAINS 5% N. 10% P205, AND 10% K20. IF FERTILIZERS WITH THE RATIOS SHOWN ARE NOT AVAILABLE. CONTACT YOUR LOCAL GARDEN CENTER OR FERTILIZER SUPPLIER FOR THE APPROPRIATE SUBSTITUTION.

LABORATOR	Y RESULTS:								
e.c	2	0.0	0.16	9.9	75.0	25.1	0.6	39.4	59.7
SOIL pH	P lb/A	ACIDITY	K	Mg	Ca	CEC	K	Mg	Ca
-		EXCHA	EXCHANGEABLE CATIONS (meq/100 g) % S						ON

•

and the second second

1.46

COMMENTS

- To be most effective, all recommended limestone and/or fertilizer should be incorporated 6
 to 8 inches into the soil prior to planting. If plants or crop is established, apply
 recommended materials to the surface and water area well.
- If 11 to 20 pounds of limestone are recommended, divide the amount by two and apply in two applications six months apart. If 21 or more pounds are recommended, divide the amount by three and make three applications at six month intervals.
- 3. If 3 or more pounds of MgS04 (Epsom salts) are recommended, divide the amount by two and make separate applications at four month intervals. If an alternative magnesium source is used, apply an amount equal to the equivalent of 10.5% Mg in MgS04; ONLY ONE APPLICATION should be needed.
- When CEC is less than 15 (see laboratory results on front) add one inch of organic matter.
 If pH is greater than 7, use acid peat moss as the organic matter source.
- 5. Lime and fertilizer are recommended in pounds of material per each 100 square feet of area sito be treated. Use the following conversions to convert from pounds per 100 square feet to other units or area sizes:

pounds per 100 sq. ft. x 10 = pounds per 1000 sq. ft. pounds per 100 sq. ft. x 435 = pounds per acre

6. Amount of sulfer needed to lower soil pH to optimum level.

(See front of FROM	report for soil pH a	and optimum pH) SULFUR	FROM	то	SULFUR
CURRENT	OPTIUM	(ib/100 sq ft)	CURRENT	OPTIUM	(ib/100 sq ft)
SOIL PH	SOIL PH		SOIL PH	SOIL PH	
8.0	7.5	0.50	7.0	6.5	0.75
5.0	7.0	1.00		6.0	1.25
	6.5	2.00		5.5	2.50
	6.0	3.00			
	5.5	4.00			
7.5	7.0	0.75	6.5	6.0	1.00
	6.5	1.25		5.5	1.75
	6.0	2.50			
	5.5	3.50	6.0	5.5	1.50

Apply sulfur at the above rates for a loam soil. On heavier soil (silt loams) use one third more than the amount shown. On lighter soils (sandy loams) use one-half of the amounts shown. If aluminum or ferrous sulfate is used to lower pH, multiply the above amounts by 2.5. Follow the same suggestions as above for soil types. If 4 or more pounds are needed, divide the amount in half and make two applications six months apart.

7 There is no reliable test for evaluating the amount of nitrogen (N) in soils that is available to crops over the growing season. The N recommended is based on the actual N that needs to be supplied annually to ensure optimum crop growth.

The state of the s UNSPECIFIED 336706 00 OUT OF STATE 103372 5687 11/10/98 SOIL FIELD ACRES COUNTY SERIAL MO. LAB MO. DATE

AGRICULTURAL AMALYTICAL SERVICES LABORATORY COLLEGE OF AGRICULTURAL SCIENCES THE PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PA 16802 (814 863-0841)

SOIL TEST REPORT FOR:

JOHN JOHNSON 2890 WOODBRIDGE AVE EDISON NJ

08837

COPY SENT TO:

JENNIFER ROYCE 2890 WOODBRIDGE AVE

EDISON NJ

08837

1 75.

SOIL NUTRIENT LEVEL SOIL PH Phosphate (Pg Potash (Kg Magnesium (Mg) Calcium (Cal		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	MEDIDM HIGH CHANGOGORANANANANANANANANANANANANANANANANANANAN	EXCESSIVE
RECOMMENDATIONS	PH ADJUSTMENT LB/100 SQ.FT.	GARDEN CROP MG (MgSO4) EPSOM SALTS	AND CALCIUM ADJUSTMENT LB/100 SQ.FT.	See Back For Comments
CALCITIC LIMESTONE (0-3% MG)	NONE	(CaSO4) GYPSUM	NONE	3.5
PLANT NUTRIEN NEEDS: LBS/100 SQ.FT	NUNE	5-10-5	10-10-10 + NONE	7
MESSAGES!	0-46-0	0-0-60 + NONE	UREA NONE	

- IF SDIL PH IN LABORATORY RESULTS IS GREATER THAN 6.5, USE SULFUR (SEE TABLE ON BACK) TO LOWER PH TO OPTIMUM LEVEL OF 6.5.

Park of

- THE ABOVE LIME AND FERTILIZER RECOMMENDATIONS ARE FOR THIS SOIL SAMPLE AND THIS SEASON DNLY PLANT NUTRIENT RECOMMENDATIONS ARE FOR FERTILIZERS CONTAINING SPECIFIC RATIOS OF NITROGEN (N). PHOSPHATE (P205) AND POTASH (K20). AS AN EXAMPLE 5-10-10 CONTAINS 5% N. 10% P205. AND 10% K20. IF FERTILIZERS WITH THE RATIOS SHOWN ARE NOT AVAILABLE. CONTACT YOUR LOCAL GARDEN CENTER OR FERTILIZER SUPPLIER FOR THE APPROPRIATE SUBSTITUTION.

LABORATOR	Y RESULTS:						•		
6.4	101	0.0	0.49	2.1	27.5	17.6	2.7	11.7	85.2
SOIL PH	P 1b/A	ACIDITY	K	Mg	Ca	ŒC	K	Mg	Ca ·
•		EXCHAN	GEABLE C	ATIONS	(meq/100	g)	१	SATURATI	ON

OTHER TESTS:

COMMENTS

- To be most effective, all recommended limestone and/or fertilizer should be incorporated 6
 to 8 inches into the soil prior to planting. If plants or crop is established, apply
 recommended materials to the surface and water area well.
- If 11 to 20 pounds of limestone are recommended, divide the amount by two and apply in two applications six months apart. If 21 or more pounds are recommended, divide the amount by three and make three applications at six month intervals.
- 3. If 3 or more pounds of MgS04 (Epsom salts) are recommended, divide the amount by two and make separate applications at four month intervals. If an alternative magnesium source is used, apply an amount equal to the equivalent of 10.5% Mg in MgS04; ONLY ONE APPLICATION should be needed.
- 4. When CEC is less than 15 (see laboratory results on front) add one inch of organic matter.
 If pH is greater than 7, use acid peat moss as the organic matter source.
- 5. Lime and fertilizer are recommended in pounds of material per each 100 square feet of area to be treated. Use the following conversions to convert from pounds per 100 square feet to other units or area sizes:

pounds per 100 sq. ft. x 10 = pounds per 1000 sq. ft. pounds per 100 sq. ft. x 435 = pounds per acre

6. Amount of sulfer needed to lower soil pH to optimum level.

(See front of FROM	report for soil pH TO	and optimum pH) SULFUR	FROM	то	SULFUR
CURRENT	OPTIUM	(lb/100 sq ft)	CURRENT	OPTIUM	(lb/100 sq ft)
SOIL PH	SOIL PH		SOIL PH	SOIL PH	
8.0	7.5	0.50	7.0	6.5	0.75
	7.0	1.00		6.0	1.25
	6.5	2.00	•	5.5	2.50
	6.0	3.00			
	5.5	4.00			
7.5	7.0	0.75	6.5	6.0	1.00
	6.5	1.25		5.5	1.75
	6.0	2.50			
	5.5	3.50	6.0	5.5	1.50

Apply suffur at the above rates for a loam soil. On heavier soil (silt loams) use one third more than the amount shown. On lighter soils (sandy loams) use one—half of the amounts shown. If aluminum or ferrous sulfate is used to lower pH, multiply the above amounts by 2.5. Follow the same suggestions as above for soil types. If 4 or more pounds are needed, divide the amount in half and make two applications six months apart.

7 There is no reliable test for evaluating the amount of nitrogen (N) in soils that is available to crops over the growing season. The N recommended is based on the actual N that needs to be supplied annually to ensure optimum crop growth.

The same of the same of A ANTO DIVERSITA MARIE MARIE UNSPECIFIED 336707 00 OUT OF STATE 103373 11/10/98 5688 SOIL ACRES FIELD COUNTY SERIAL NO. LAB MO. DATE

AGRICULTURAL AMALYTICAL SERVICES LABORATORY COLLEGE OF AGRICULTURAL SCIENCES THE PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PA 16802 (814 863-0841)

SOIL TEST REPORT FOR

JOHN JOHNSON 2890 WOODBRIDGE AVE

EDISON NJ

08837

COPY SENT TO:

JENNIFER ROYCE 2890 WOODBRIDGE AVE

EDISON NJ

08837

SOIL NUTRIENT LEVELS:		LON	MEDIUM HIGH	EXCESSIVE
Soil pH		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	\$4.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6
Phosphate (P2Os)		x		
Potash (KgO)		XXX		
Magnesium (MgO)		XXXXXXXXXXXXXXXXXX	XXXXXXXXXXXX	
Calcium (CaO)		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXX	
				D-01
RECOMMENDATIONS FOR	UNSPECIFIED	GARDEN CROP MO	AND CALCIUM ADJUSTMENT LB/100 SQ.FT.	See Back For Comment
nu i	ADJUSTMENT	(MgSO4) EPSOM SALTS	NONE	1.2
	100 SQ.FT.			ŀ
CALCITIC		(CaSO4)		
LIMESTONE	NONE	GYPSUM	NONE	3,5
(0−3% MG) L				
		•		
PLANT NUTRIENT	5-10-10	5-10-5	10-10-10	
NEEDS:	2.5	+ NON	+ NONE	7
LBS/100 SQ.FT.	2.5	1011		i i
			•	
	0-46-0	0-0-60	UREA	
	1.0	NON	E . NONE	4
	'."	+ 1000	+ 10112	
MESSAGES				

- IF SOIL PH IN LABORATORY RESULTS IS GREATER THAN 6.5, USE SULFUR (SEE TABLE ON BACK) TO LOWER PH TO OPTIMUM LEVEL OF 6.5.
- THE ABOVE LIME AND FERTILIZER RECOMMENDATIONS ARE FOR THIS SOIL SAMPLE AND THIS SEASON ONLY PLANT NUTRIENT RECOMMENDATIONS ARE FOR FERTILIZERS CONTAINING SPECIFIC RATIOS OF NITROGEN (N). PHOSPHATE (P205) AND POTASH (K20). AS AN EXAMPLE 5-10-10 CONTAINS 5% N. 10% P205, AND 10% K20. IF FERTILIZERS WITH THE RATIOS SHOWN ARE NOT AVAILABLE. CONTACT YOUR LOCAL GARDEN CENTER OR FERTILIZER SUPPLIER FOR THE APPROPRIATE SUBSTITUTION.

LABORATOR	Y RESULTS:									
			0.10	1	75.0	19.8	0.9	23.4	75.7	-
SOIL pH	13 P 1b/A	O.O ACIDITY	0.19 K	4.6 Mg	/5.0 Ca	CEC	K K	Mg	Ca	\neg
		EXCHA	GEABLE C	ATIONS	meq/100	g)	. 8	SATURATI	ON	

COMMENTS

- To be most effective, all recommended limestone and/or fertilizer should be incorporated 6
 to 8 inches into the soil prior to planting. If plants or crop is established, apply
 recommended materials to the surface and water area well.
- If 11 to 20 pounds of limestone are recommended, divide the amount by two and apply in two applications six months apart. If 21 or more pounds are recommended, divide the amount by three and make three applications at six month intervals.
- If 3 or more pounds of MgS04 (Epsom salts) are recommended, divide the amount by two
 and make separate applications at four month intervals. If an alternative magnesium source
 is used, apply an amount equal to the equivalent of 10.5% Mg in MgS04; ONLY ONE APPLICATION
 should be needed.
- 4. When CEC is less than 15 (see laboratory results on front) add one inch of organic matter.
 If pH is greater than 7, use acid peat moss as the organic matter source.
- 5. Lime and fertilizer are recommended in pounds of material per each 100 square feet of area ato be treated. Use the following conversions to convert from pounds per 100 square feet to other units or area sizes:

pounds per 100 sq. ft. \times 10 = pounds per 1000 sq. ft. pounds per 100 sq. ft. \times 435 = pounds per acre

6. Amount of sulfer needed to lower soil pH to optimum level.

(See front of FROM	report for soil pH TO	and optimum pH) SULFUR	FROM	то	SULFUR
CURRENT	OPTIUM	(lb/100 sq ft)	CURRENT	OPTIUM	(lb/100 sq ft)
SOIL PH	SOIL PH		SOIL PH	SOIL PH	
8.0	7.5	0.50	7.0	6.5	0.75
	7.0	1.00		6.0	1.25
	6.5	2.00		. 5.5	2.50
	6.0	3.00			}
	5.5	4.00			,
7.5	7.0	0.75	6.5	6.0	1.00
	6.5	1.25		5.5	1.75
	6.0	2.50			
	5.5	3.50	6.0	5.5	1.50

Apply sulfur at the above rates for a loam soil. On heavier soil (silt loams) use one third more than the amount shown. On lighter soils (sandy loams) use one—half of the amounts shown. If alluminum or ferrous sulfate is used to lower pH, multiply the above amounts by 2.5. Follow the same suggestions as above for soil types. If 4 or more pounds are needed, divide the amount in half and make two applications six months apart.

There is no reliable test for evaluating the amount of nitrogen (N) in soils that is available to crops over the growing season. The N recommended is based on the actual N that needs to be supplied annually to ensure optimum crop growth.

CHAIN OF CUSTODY RECORD

COC # 3367-0002

REAC, Edison, NJ Contact: Jennifer Royce (732) 321-4200 WC# 03347-143-001 3398-01 EPA Contract 68-C4-0022

Project Name: Naples Truck Stop

Location: Naples, UT

Site Phone:

Cooler #:

Lab: Penn State

Contact: Ann Wolf

TAB#	Yag	Sample #	Location	Matrix	Collected	Container/Preservative	Analysis Requested	MS MSD	Comments
ال الله الله		3367-001	Location 1	Soli -	11/2/98	8 oz glass/4 C	Ag. coordies 1	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	<u>-</u>
GN2 GN3		3387-002	Location 2	Scil	11/2/98	8 oz glass/4 C	Agronomics II	- 1 (<u> </u>
ひびつ		3387-003	Location 3	Soli	11/2/98	8 oz glase/4 C	Agronomics II		
684		3367-004	Location 4	Soli	11/2/98	8 oz glase/4 C	Agronomics II) (
່ງປອວົ	<u> </u>	3387-005	Location 5	Soli	11/2/98	8 oz glase/4 C	Agronomics II		
		3367-006	Location 6	Soli	11/2/98	8 oz glase/4 C	Agronomics II		
SUN	# <u>-</u>	3367-007	Fall	Soli	•	8 oz glass/4 C	Agronomics II		
5655) · ^ - ·								
	-		<u> </u>						
			÷						•
	.								
	.	4						:	• · · · · · · · · · · · · · · · · · · ·
	<u> </u>	4				- · · -	- · · · · · · · · · · · · · · · · · · ·	:	•
	- -	4							•
	<u> </u>	4				- m m 21		!	
	1 _		+					· i	-
	<u>i</u> _		i		. 4			-	•
	1 _					<u></u>			•
	7 -				;				•
	-					1	•		
·		~	1						

ac: M

Special instructions:
Agronomics II = Available Macronutrients Ca, Mg, K, pH, CEC, Available Micronutrients Mn, Zn, Cu, Scluable Sats, TOC, Percent Molsture

ieme/Reason	Relinquished By	Date Receiv	red By	Date	Time
AII/Amysis	Jennyer Pryca	11/3/58 Raug	farmstake	11/4/98	10.00

REFERENCE COC:

Items/Reason

Relinquished E

Date Received By

Date Time

ACCOUNT NUI : 00020

A & L GREAT LAKES LABORATORIES, INC.

R310-001 ADDITION 12/1/98

3505 Conestoga Drive · Fort Wayne, Indiana 46808-4413 · Phone (219)483-4759 · FAX (219)483-5274

REPORT OF ANALYSIS

A & L EASTERN AGRIC LABS 7621 WHITEPINE ROAD RICHMOND, VA 23237-2214 ROY F WESTON INC BLDG 209 ANNEX (BAY F) 2890 WOODBRIDGE AVE. EDISON NJ 08837

DATE RECEIVED: 11/10/98
DATE REPORTED: 11/24/98

PAGE: 1

RE: WO#03347-143-001-3367-01

EPA CONTRACT 66-C4-0022

NAPLES TRUCK STOP

RE: 45680/45686

LAB NO.	8/	AMPLE ID	ANALYSIS	RESULT	UNIT	METHOD
40679	45680	(3367-001)	Water Holding Capacity @ 1/3 Bar	15.21	%	MSA Part 1 (1965) pp 273-278
		(000, 001)	Water Holding Capacity @ 15 Bar	8.29	%	MSA Part 1 (1965) pp 273-278
********	45004		Water Holding Capacity @ 1/3 Bar	15.97	%	MSA Part 1 (1965) pp 273-278
40680	45681	(3367-002)	Water Holding Capacity @ 15 Bar	8.18	%	MSA Part 1 (1965) pp 273-278
· · · · · · · · · · · · · · · · · · ·			Water Holding Conneity @ 4/2 Bor	17.29	%	MSA Part 1 (1965) pp 273-278
40681	45682	(3367-003)	Water Holding Capacity @ 1/3 Bar Water Holding Capacity @ 15 Bar	9.04	%	MSA Part 1 (1965) pp 273-278
or or or or or or or or or or or or or o						
40682	45683	(3367-004)	Water Holding Capacity @ 1/3 Bar	15.85	%	MSA Part 1 (1965) pp 273-278
		(3307-004)	Water Holding Capacity @ 15 Bar	8.33	%	MSA Part 1 (1965) pp 273-278
40683	45684	(2257 205)	Water Holding Capacity @ 1/3 Bar	16.60	%	MSA Part 1 (1965) pp 273-278
40000	70004	(3367-005)	Water Holding Capacity @ 15 Bar	8.87	%	MSA Part 1 (1965) pp 273-278
40884	45685	4	Water Holding Capacity @ 1/3 Bar	8.86	%	MSA Part 1 (1965) pp 273-278
40684	73003	(3367-006)	Water Holding Capacity @ 15 Bar	4.05	%	MSA Part 1 (1965) pp 273-278

REPORT NUMBER: 198314-45

A & L GREAT LAKES LABORATORIES, INC.

3505 Conestoga Drive • Fort Wayne, Indiana 46808-4413 • Phone (219)483-4759 • FAX (219)483-5274

REPORT OF ANALYSIS

TO: A & L EASTERN AGRIC LABS

7621 WHITEPINE ROAD

RICHMOND, VA 23237-2214

DATE RECEIVED:

l 1/10/98 -

DATE REPORTED:

11/24/98

PAGE: 2

RE: 45680/45686

distance of	LAB NO.	SAMPLE ID	ANALYSIS	RESULT	UNIT	METHOD	
	40685	45686 (3367-007)	Water Holding Capacity @ 1/3 Bar Water Holding Capacity @ 15 Bar	7.00 3.47	% %	MSA Part 1 (1965) pp 273-278 MSA Part 1 (1965) pp 273-278	

USEPA EN.

CHAIN OF CUSTODY RECORD

COC # 3367-0001

REAC, Edison, NJ
Contact: Jennifer Royce
(732) 321-4200
WOR 03347-143-001-8889-01
EPA Contract 68-04-0022

Project Name: Naples Truck Stop Location: Naples, UT

Ste Phene:

Page No.: ___ dl ___

Lab: A & L. Esstern Agricultural Lab

Contact: Paul Chu

	# Tag	# elqmas	Location	ed of course	Matrix	Collected	Container/Preservative	Analysis Requested	MS MSD	Comments
	- TP-	3987-001	Location 1	A MANAGEMENT	Soll	11/2/00	32 oz glate/4 C	Agronomics I	+	
	F-	3367-002	Location 2	-3	Boll	11/2/90	32 oz glate/4 C	Agronomics I	- - -	
	- 1	3367-003	Location 3	<u>a</u>]	801	11/2/08	32 oz glese/4 C	Agronomice I	4	
	- TP-	3367-004	Location 4	2	Boll		32 oz glase/4 C	Agronomics I	-	
	- TF-	3367-006	Location 5	_2	Boll		32 oz glese/4 C	Agronomiqa I	-	
	- TF-	3367-008	Location 6	-& -	Soll	- i	32 oz glase/4 C	Agronomics I		
-	F	3367-007	Fill	- 2	801		32 oz glatel (C	Agronomics I	+	
			<u> </u>	_ 🚾 _	 				+	
•	_ _				!	7				
	_									
						7	 		· †	
· .	_ + _					-			" +	
	- + -	4]				
	- 4 -	4							-	
·. •.;;••••	- 4 -									·
	_ _								-	
										
je Je	- 🕹 🖵	4							·· • • • •	
		4							+	
سبيس						7				· · · · ·
Gronon	Retructions: Icq I = Amm	onia, Nikrata, Nikrita Ti	kiN, Available P, Sulfate Water Holding Capach), Chioride,	, Available Micro	nutrients B, C	REFERENCE COC		· •.= &.	_

Benighteneon Relinquished by Date Received by Date Time Items/Reason Relinquished by Date Received by Date Time

APPENDIX C
Final Microbiology Results
Naples Truck Stop Site
Final Report
April 1999

Background Information

Soil samples were analyzed using the experimental protocol outlined below (see page 2). Nitrogen analysis included measurement of NH₄-N, NO₃-N, DON and MBN parameters. Ammonium (NH₄-N) and nitrate (NO₃-N) are forms of nitrogen that are considered to be readily-available for uptake by plants. In natural systems, ammonium and nitrate concentrations are regulated by microbial activity. Some types of soil bacteria and fungi, commonly referred to as heterotrophic or saprotrophic microorganisms, derive much of their energy from the decomposition of organic matter (e.g. plant and animal residues). Nitrogen in excess of their metabolic requirements is released as ammonium. A group of soil bacteria, known as ammonium oxidizers, are capable of using ammonium as an energy source and in the process convert NH₄-N to NO₃-N. Mineral N is the total concentration of NH₄-N and NO₃-N in soil, and is an indication of the amount of nitrogen in the soil that can be easily taken up by plants. Dissolved organic nitrogen (DON) includes amino acids, proteins, and other organic nitrogen-containing compounds that exist in the soil solution or are very loosely bound to the soil matrix. These materials may be available for decomposition by microorganisms and thus contribute to the mineral N pool, or may become physically and/or chemically stabilized in the soil organic Microbial biomass nitrogen (MBN) is the nitrogen in cells of soil nitrogen pool. microorganisms and is determined by fumigating soil with chloroform, which causes microbial cells to lyse, releasing nitrogen into the soil where it can be extracted and measured.

Carbon analysis in the experiment included DOC, MBC and CO₂-C analysis. Dissolved organic carbon (DOC) includes carbon in sugars, amino acids, proteins, organic acids and other organic carbon-containing compounds that exist in the soil solution or are bound loosely to clays and soil organic matter. Similarly to DON, dissolved organic carbon compounds may be an energy source for microorganisms or become stabilized in soil organic matter. Microbial biomass carbon (MBC) is a measure of the carbon in cells of soil microorganisms and is determined in the same manner as MBN. Microbial activity, or respiration, is the quantity of CO₂-C evolved from soil during soil. Microbial biomass carbon and nitrogen analysis allow for a more or less quantitative measurement of C and N in microbial cells; however, these analysis do not

provide information on the proportion of the microbial communities that are actively growing. Varying proportions of soil bacteria and fungi are actively growing at any given time, depending on climatic and soil conditions. CO₂-C respiration measures directly the proportion of actively growing organisms in the soil microbial community.

The experiment included soil biochemical analysis, namely the FDA, dehydrogenase and b-glucosidase assays. The fluorescein diacetate assay (FDA) measures the number of active fungal cells in soil based on the hydrolysis of fluorescein diacetate to fluorescein by esterase enzymes. Dehydrogenase is an enzyme found in the cells of microorganisms and is important in the oxidation of organic carbon compounds. The dehydrogenase activity of soils is a measure of the ability of active bacterial cells to break down organic matter, and is often well correlated to CO₂-C respiration, although this may vary depending on the site sampled. The b-glucosidase assay measures the ability of microorganisms, primarily fungi, to hydrolyze glycosides (components of cellulose and lignin) to simple sugars. The hydrolysis products of b-glucosidase enzymes are believed to be an important energy source for soil microorganisms.

The C, N and biochemical parameters were measured on soil samples collected from the field and after incubation (42 days). The purpose of incubating soils was to determine the potential of the microorganisms in soils from the Naples site to mineralize C and N and determine their biochemical activity under controlled conditions that are known to be conducive to microbial activity (e.g. temperature = 25°C, soil moisture content = 80%).

Procedure for Soil Nitrogen and Carbon Analysis

Field-moist soil samples were sieved through a 2 mm mesh sieve and analyzed to determine mineral N (NH₄-N and NO₃-N), dissolved organic nitrogen and carbon (DON and DOC), and microbial biomass nitrogen and carbon (MBN and MBC). A subsample of the sieved soil was oven-dried at 60°C for 48 hours to determine gravimetric soil moisture content.

Mineral N (NH₄-N and NO₃-N) and dissolved organic nitrogen and carbon (DON and DOC) were determined by extracting 20 g of sieved, field-moist soil with 80 ml of 0.5 M K₂SO₄ solution (1:4 soil:extractant). Samples were shaken on a rotary shaker at

150 rpm for 45 minutes, filtered through Whatman 42 filter paper and stored at 4°C until analysis.

NH₄-N and NO₃-N concentrations in soil extracts were determined colorimetrically using the phenate and ccadmium reduction-diazotization methods with a Technicon II flow-injection autoanalyzer. DON was determined by digesting 2 ml of the original soil extract and 2 ml of 0.5 M K₂SO₄ solution with 3 ml of an alkaline persulfate solution (6.24 g of boric acid, 10.4 g of potassium persulfate and 20 ml of 3.75 N NaOH in 200 ml of deionized water) in an autoclave for 30 minutes. The DON concentration was calculated as the difference between the NO₃-N concentration in the persulfate digest of the soil extract and the mineral N (NH₄-N + NO₃-N) concentration in the initial soil extract. The DOC concentration in soil extracts was measured by wet combustion with a Dohrman DC-190 carbon analyzer.

Microbial biomass nitrogen and carbon (MBN and MBC) were be determined using the chloroform fumigation-direct extraction method. Briefly, 20 g of sieved, field-moist soil was weighed into a 125 ml Erlenmeyer flask and placed in a vacuum desiccator lined with moist paper towels. A beaker containing 50 ml of ethanol-free chloroform and antibumping granules was added, and the desiccator was evacuated until the chloroform boiled vigorously. The procedure was repeated three times to facilitate the distribution of chloroform through the soil. The desiccator was evacuated a fourth time until the chloroform boiled vigorously for 2 minutes, and the valve on the desiccator was closed.

Soil samples were fumigated once a day for five days, and then extracted with 80 ml of 0.5 M K₂SO₄ solution (1:4 soil:extractant). Samples were shaken on a rotary shaker at 150 rpm for 45 minutes and filtered through Whatman 42 filter paper. MBN was determined by digesting 2 ml of the fumigated soil extract and 2 ml of 0.5 M K₂SO₄ with 3 ml of an alkaline persulfate solution in an autoclave for 30 minutes. The MBN concentration was calculated as the difference between the total extractable NO₃-N after fumigation and the total extractable NO₃-N before fumigation. The MBC concentration was calculated as the difference between the extractable C content in soil extracts after fumigation and the extractable C content before fumigation. Extractable C in soil

extracts after fumigation was measured by wet combustion with a Dohrman DC-190 carbon analyzer.

Net Nitrogen and Carbon Mineralization during Laboratory Incubation

Net carbon and nitrogen mineralization in soil samples was determined by aerobically incubating soils in the laboratory at 25°C for 42 days. Two 50 ml beakers containing twenty grams of field-moist soil, moistened to at least 29% gravimetric soil moisture content, and a scintillation vial containing 10 ml of water to prevent soil desiccation were placed into a one quart mason jar. The jar was capped with a gas tight lid containing a rubber septum for gas sampling.

Microbial respiration (CO₂-C production) was measured every 7 days using a gas tight syringe. After mixing the gas in the headspace of the mason jar, a 5 ml sample was taken and injected into a 3 ml vacutainer. Then, the lids were removed for 15 minutes to aerate the soil, and a second gas sample was taken after the mason jars are resealed to determine the new baseline amounts of respiratory gases in the headspace. The CO₂-C concentration was determined using a Hach Carle Series 100 infrared gas analyzer.

After 42 days, the soils were removed from the mason jars and analyzed to determine mineral N (NH₄-N and NO₃-N), dissolved organic nitrogen and carbon (DON and DOC), and microbial biomass nitrogen and carbon (MBN and MBC) using the procedures outlined above. Net nitrogen mineralization was the difference between the initial (day 0) and final (day 42) concentrations of mineral nitrogen (NH₄-N + NO₃-N). Net changes in DON, DOC, MBN and MBC were the differences between the initial (day 0) and final (day 42) concentrations of extractable soil nitrogen and carbon pools. Mean CO₂-C production was the mean concentration of CO₂-C produced from microbial respiration assessed weekly during soil incubation.

Fungal Community Analysis using Fluorescein Diacetate Method

Active cells of fungal mycelia contain esterase enzymes that hydrolyze the nonfluorescent ester fluorescein diacetate (FDA) to produce fluorescein that can be detected by epifluroescence microscopy. Twenty grams of sieved, field moist soil was suspended in 95 ml of 60 mM phosphate buffer adjusted to soil pH and shaken at 225 rpm for 15 minutes. One ml of the soil suspension was diluted with 4 ml of phosphate buffer (50-fold dilution), and 1 ml of the 50-fold soil dilution was incubated with 1 ml of

sterilized FDA (20 mg L⁻¹) for 3 minutes at room temperature. Then, 1 ml of a water agar solution (1.5% w/v in phosphate buffer, pH 7.6) was added and 0.1 ml of the suspension is transferred to a microscope slide. The slides were examined under a light microscope at 400 to 1000X to determine the proportion of FDA-hydrolyzing mycelia, and the total mycelial length was determined using phase contrast optics.

Enzyme Activity using Dehydrogenase and b-Glucosidase Assays

Active bacterial cells contain dehydrogenase enzymes, which are involved in the oxidation of soil organic matter and transfer of hydrogen ions from organic compounds to electron acceptors. Hydrolysis of the substrate 2,3,5,-triphenyltetrazolium chloride (TTC) by dehydrogenase leads to the formation of triphenyl formazan (TPF). One gram of sieved, field moist soil was mixed with 0.1 g of CaCO₃ in a test tube. Five replicate tubes of soil were prepared for each soil sample obtained from the field. Three tubes received 2 ml of the TTC solution (0.5% TTC in 0.5 M Tris buffer) and 1 ml of 0.5 M Tris buffer, while the other two tubes received only 1 ml of 0.5 M Tris buffer and served as the control. All tubes were incubated at 37°C for six hours, and placed in a freezer at -10°C to stop the reaction. The enzyme-cleaved product TPF was extracted with 10 ml of methanol, filtered through Whatman 42 filter paper, and analyzed colorimetrically at 480 nm using Titertek Multiscan MCC/340 automated microplate reader.

Glucosidases hydrolyse glycosides (components of cellulose and lignin) to simple sugars that may be an important energy source for soil microorganisms. The most common soil glucosidase is b-glucosidase, a component of most fungal cells. b-glucosidase activity was assayed by mixing 1 g of sieved, field-moist soil with 0.25 ml of toluene, 4 ml of modified universal buffer (pH 6.0) and 1 ml of 0.05 M p-nitrophenyl-b-D-glucoside (PNG) solution. Five replicate tubes were prepared for each soil sample obtained from the field. Three tubes received the PNG solution while the other two tubes served as a control. All tubes were placed in an incubator at 37°C. After one hour, 1 ml of 0.5 M CaCl₂ and 4 ml of 0.1M THAM buffer (pH 12) were added. The tubes were mixed, filtered through Whatman 42 filter paper, and the quantity of p-nitrophenol hydrolyzed by b-glucosidase was determined colorimetrically at 420 nm using Titertek Multiscan MCC/340 automated microplate reader.

References for Analytical Procedures

Brookes P.C., Landman A., Pruden G., and Jenkinson D.S. (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry 17:837-842.

Cabrera M.L. and Beare M.H. (1993) Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Science Society of America Journal 57:1007-1012.

Hart S.C., Stark J.M., Davidson E.A. and Firestone M.K. (1994) Nitrogen mineralization, immobilization and nitrification. *In* R.W. Weaver, J.S. Angle, and P.S. Bottomley (eds). Methods of soil analysis, Part 2. Microbiological and biochemical properties. Soil Science Society of America, Madison WI, pp. 985-1918.

Joergensen, R.G. (1996) The fumigation-extraction method to estimate soil microbial biomass: clibration of the $k_{\rm EC}$ value. Soil Biology and Biochemistry 28:25-31.

Joergensen R.G. and Mueller T. (1996) The fumigation-extraction method to estimate soil microbial biomass: calibration of the $k_{\rm EN}$ value. Soil Biology and Biochemistry 28:33-37.

Stamatiadis S., Doran J.W., Ingham E.R. (1990) Use of staining and inhibitors to separate fungal and bacterial activity in soil. Soil Biology and Biochemistry 22:81-88.

Subler S.E., Baranski C.M, Edwards C.A. (1997) Earthworm additions increased short-term nitrogen availability and leaching in two grain-crop agroecosystems. Soil Biology and Biochemistry 29:413-421.

Tabatabai M.A. (1994) Soil Enzymes. In R.W. Weaver, J.S. Angle, and P.S. Bottomley (eds). Methods of soil analysis, Part 2. Microbiological and biochemical properties. Soil Science Society of America, Madison WI, pp. 775-833.

Zibilske L.M. (1994) Carbon mineralization. *In* R.W. Weaver, J.S. Angle, and P.S. Bottomley (eds). Methods of soil analysis, Part 2. Microbiological and biochemical properties. Soil Science Society of America, Madison WI, pp. 835-864.

Interpretation of Results for Naples Truck Stop

Nitrogen Analysis

Initial concentrations (day 0) of NH₄-N were relatively low at all sites sampled, ranging from about 0.2 to 0.8 mg NH₄ g⁻¹ soil. The net change in NH₄-N concentrations during laboratory incubation was relatively small. There was a net decline in the NH₄-N concentration in soils from sites 1 and 7, and a net increase in NH₄-N at all other sites.

Nitrate (NO₃-N) concentrations varied considerably between sites, and increased substantially after laboratory incubation of soils from sites 3, 6 and 7. Dissolved organic nitrogen (DON) concentrations declined, and microbial biomass nitrogen (MBN) concentrations tended to increase or remain stable during laboratory incubation.

It appears that for soils from the sites examined, dissolved organic nitrogen may have contributed to microbial growth and accumulation of N in microbial biomass. Other sources of N for microbial growth were likely N from the mineral N pools, which may account for the small net changes in NH₄-N and NO₃-N concentrations during laboratory incubation. It appears that much of nitrogen released from organic matter (NH₄-N) or converted to NO₃-N by ammonium oxidizers was immobilized (i.e. excess mineral N was quickly incorporated into microbial biomass).

Carbon Analysis

Dissolved organic carbon concentrations did not change dramatically during soil incubation. In most soils, DOC concentrations increased slightly after 42 days, although in sites 2 and 6, DOC concentrations decreased slightly. The microbial biomass C concentrations increased in all soils after incubation, suggesting microbial growth and accumulation of carbon in microbial cells.

Uptake of carbon and nitrogen by microorganisms varied among sites. In sites 1, 2, 3 and 6, both C and N concentrations in microbial biomass increased greatly during soil incubation. However, in sites 4, 5 and 7, MBC increased while MBN concentrations remained approximately the same or declined slightly. These results suggest that microbial growth in sites 1, 2, 3 and 6 was limited by the availability of carbon and nitrogen sources, while microorganisms in sites 4, 5 and 7 lacked primarily carbon for growth. In uncontaminated systems, microbial growth is typically limited by carbon availability.

Soil respiration was determined by taking CO₂ measurements from incubating soils on a weekly basis. There was considerable variability in weekly CO₂-C production within replicates from the same site, which suggests periods of considerable microbial growth and activity followed by periods of much less growth and activity. Cumulative CO₂-C production, which is a measure of the total soil respiration over a 42 day incubation, was presented. Soil respiration was lowest in site 1 and greatest in site 6. It

appeared that despite the substantial accumulation of C and N in microbial biomass of soils from sites 1, 2, and 3, microbial growth and respiration was reduced compared to soils from sites 4 to 7. Respiration was greatest in soils from site 6, which indicates the potential for a large proportion of the microbial community in this soil to be active when temperature and moisture conditions are optimal.

Fungal and Enzyme Analysis

Active fungal length and biomass was determined in soil samples from the study site prior to incubation and at the end of a 42 day laboratory incubation. Initially, active fungi were detected only in site 6; however, after laboratory incubation, fungal growth was detected in soils from sites 2, 5, 6 and 7. The biomass and length of active fungi was greatest in soil from site 6 at all sampling times. The increase in active fungi in soils from sites 2, 5, 6 and 7 suggests the potential for fungal growth and activity when temperature and moisture conditions are optimal.

Soil enzyme analysis was conducted to determine the activity of dehydrogenase and b-glucosidase enzymes in soil samples collected for this study. Enzyme activity is determined by adding a substrate to soil, providing appropriate conditions for substrate hydrolysis and measuring the product of the reaction. Soil enzyme activity is expressed as the quantity of enzyme-cleaved product generated per gram of soil. Active bacterial cells contain dehydrogenase enzymes, which are involved in the oxidation of soil organic matter. The dehydrogenase activity of soil samples in this study ranged from 0.93 – 3.95 mg TTF g⁻¹ soil at day 0, and increased to 1.67 to 8.54 mg TTF g⁻¹ soil after 42 days of laboratory incubation. Dehydrogenase activity increased in soil from all sites except site 4, where dehydrogenase activity decreased slightly during laboratory incubation. Dehydrogenase activity after laboratory incubation was greatest in soil from site 6. The increase in dehydrogenase activity was likely due to bacterial growth under laboratory conditions, and suggests the potential for rapid bacterial growth in soils from these sites under optimal conditions.

The enzyme b-glucosidase is a component of most fungal cells, and provides information on the presence of enzymes capable of hydrolysing glycosides (components of cellulose and lignin). The initial b-glucosidase activity of soils from the study site was between 0.33 - 24.5 mg PNP g⁻¹ soil. Soil from site 6 had the greatest initial b-

glucosidase activity, while the lowest initial enzyme activity was observed in sites 3 and 4. Laboratory incubation of soils from the study site resulted in an increase in b-glucosidase activity in all samples, and enzyme activity was between 30-90% greater after laboratory incubation. The increase in b-glucosidase activity was likely due to fungal growth, and suggests that laboratory conditions were conducive to fungal proliferation in soils from the study site. However, when the b-glucosidase and dehydrogenase activities in soil from site 6 are compared with soils from the other sites, it was noted that, after laboratory incubation, b-glucosidase activity in soil from site 6 was four to twelve times greater than b-glucosidase activity in soil from the other sites. Dehydrogenase activity in soil from site 6 was not more than five-fold greater than dehydrogenase activity in soil from other sites. These results seem to indicate that bacterial communities in soils from all sites are capable of more rapid recovery to perturbation than fungal communities.

Overall, this study demonstrates that soils with very low initial microbial biomass have the capacity to reestablish active microbial communities within a relatively short time (42 days) under optimal conditions. Mineral nitrogen concentrations were low throughout the study, which suggests that much of the available nitrogen was immobilized in microbial biomass. While these soils have the potential to provide sufficient nitrogen for native vegetation, they are likely not well suited for production agriculture.

Son Sample Analysis Sheet

Name:

Site:

Jen Royce Naples Truck Stop

Sampling Date:

November, 1998

Procedure:

K₂SO₄-extractable DOC and MBC & CO₂-C analysis

		Incubation	DOC	MBC		CO ₂ -C pro	oduction (μο	g g ⁻¹ soil)	7.6. 7.1		Total CO ₂ -C
Site #	Replicate	Time (d)	μg g ⁻¹ soil	μg g ⁻¹ soil	Day 7	Day 14	Day 21	Day 28	Day 35	Day 42	μg g ⁻¹ soil
	4	0	92.04	22.76							
1 1	1 2	0 0	83.01	32.76							
			154.20	202 24	0.55	e ee	5 40	4.05		4.00	
1 1	1	42 42	154.30	283.21	9.55	5.55	5.48	1.25	5.55	1.82	29.20
<u> </u>	2	42			6.72	9.32	3.45	3.35	12.50	2.21	37.53
2	1	0	149.96	53.50							
2	2	Ö	1-70.00	00.00							
2	1	42	145.59	214.33	6.03	9.61	3.41	3.66	5.96	1.74	30.41
2	2	42			5.49	7.73	3.86	2.10	19.83	1.73	40.74
							0.00			1	10.14
3	1	0	95.02	20.38							
3	2	0									
3 3	1	42	123.40	216.73	7.57	11.01	4.72	4.70	2.73	1.95	32.68
3	2	42			5.91	37.47	•	2.70	17.78	0.84	64.70
		·							, .		
4	1	0	113.30	6.69							
4	2	0									
4	1	42	198.07	232.43	10.96	6.72	2.32	1.43	6.67	2.58	30.69
4	2	42			2.77	50.14	2.32	1.53	23.50	4.39	84.64
E	4	0	93.24	18.29							
5 5	1 2	0 0	53.24	10.29							
5	1	42	216.53	416.93	4.37	39.46	3.18	0.77	16.95	6.39	71.12
5	2	42 42	210.55	410.53	7.57	47.34	4.17	2.11	15.38	1.91	71.12 78.46
					7.57	77.34	4,17	<u> </u>	13.30	1.51	70.40
6	1	0	170.25	361.24							
. 6	2	Ö		· · - ·							
6	1	42	153,50	687.76	43.64	123.40	36.86	32.44	94.78	60.43	391.54
6	2	42			43.33	45.99	25.79	17.84	125.82	53.31	312.08
											;
7	1	0	79.35	268.25							:
7	2	0									
7	1	42	90.15	821.58	7.38	35.44	5.09	3.75	40.19		99.53
7	2	42			3.23	33.62	4.26	3.06	63.10	2.85	110.12

Soil Sample Analysis Sheet

Name:

Jen Royce

Site:

Naples Truck Stop

Sampling Date:

November, 1998

Procedure:

K₂SO₄-extractable NH₄-N, NO₃-N, DON and MBN

		Incubation	NH₄-N	NO ₃ -N	DON	MBN
Site #	Replicate	Time (d)	μg g ⁻¹ soil	μg g ⁻¹ soil	μg g ⁻¹ soil	μg g ⁻¹ soil
1	1	0	0.55	2.60	2.17	0.00
1	2	0	0.89	2.61	2.30	0.00
1	1	42	0.20	3.16	0.00	3.97
1	2	42	0.33	2.56	0.00	3.98
2	1	0	0.63	10.01	1.47	0.00
~ 2	2	0	0.83	10.23	0.27	0.00
2	1	42	0.82	9.72	0.00	3.16
2	2	42	0.68	9.74	0.00	4.13
3	1	0	0.43	0.44	1.04	0.37
. 3	2	0	0.21	0.00	1.75	0.00
3	1	42	0.66	1.59	0.00	1.44
3	2	42	0.70	1.72	0.00	0.33
4	1	0	0.39	9.58	0.00	19.10
4	2	0	0.81	9.63	0.00	17.64
4	1	42	1.05	8.72	0.00	13.77
4	2	42	1.05	8.68	0.00	12.18
_		_		0.00	0.00	00.07
5	1	0	0.24	9.90	0.00	20.27
5	2	0	0.50	10.10	0.68	19.82
5	1	42	1.05	9.68	0.00	16.12
5	2	42	0.52	10.20	0.04	14.64
	4	0	0.00	0.97	1.18	4.90
6	1	0	0.80			4.90 2.39
6	2	0	0.25	0.00	1.88	2.39 23.40
6	1	42	1.79	20.83	0.00 0.00	
6	2	42	2.59	3.50	0.00	29.81
7	. 1	0	0.20	0.55	0.62	16.38
7	2	0	0.19	0.26	1.80	10.24
7	1	42	0.19	2.63	0.00	18.22
7	2	42 42	0.00	2.70	0.00	15.58
		44	0.13	2.10	0.00	10.00

Soil Sample Analysis Sheet

Name:

Jen Royce

Site:

Sampling Date: Procedure:

Naples Truck Stop November, 1998 Fluorescein Diacetate Fungal Analysis

		Incubation	1		Active Fungal	Active Fungal
Site #	Replicate #	Time (d)	Soil wt (g)	Soil dry wt (g)	Length (cm g ⁻¹ soil)	
1	1	0	11.93	0.86	0	0
1	1	42	12.46	0.76	0	0
2	1	0	11.91	0.89	0	0
2	1	42	13.93	0.74	37.64	0.48
3	1	0	12.89	0.92	0	0
3	1	42	12.22	0.72	0	Ö
4	1	0	13.56	0.88	0	Ô
- 4	1	42	12.44	0.75	0	0
5	,1	0	13.17	0.9	0	0
5	1	42	15.21	0.78	25.08	0.18
6	1	0	16.04	0.93	41.83	0.84
6	1	42	12.35	0.8	553.03	7.12
7	1	0	15.06	0.94	0	0
7	1	42	12.35	8.0	17.44	0.13

Soil Sample Analysis Sheet

Name:

Jen Royce

Site:

Naples Truck Stop

Sampling Date:

November, 1998

Procedure:

Dehydrogenase and β-glucosidase analysis

		Incubation	Dehydrogenase Activity	β-glucosidase Activity
Site #	Replicate #	Time (d)	μg TTF g ⁻¹ soil	μg PNP g ⁻¹ soil
1	1	0	0.94	3.06
1	· 1	42	1.67	13.66
2	1	0	3.95	4.11
2	1	42	5.90	5.93
3	1	0	2.92	0.33
3	1	42	6.41	4.44
4	1	0	2.36	0.55
4	1	42	2.15	4.62
__ 5	1	0	0.93	1.54
5	1	42	5.18	4.77
6	1	0	3.53	24.50
6	1	42	8.54	52.64
7	1	0	3.29	5.50
7	1	42	3.80	9.26

Substrates used to measure enzyme activity

Dehydrogenase activity: 2,3,5-triphenyl tetrazolium chloride (TTC)
Enzyme-cleaved product = triphenylformazan (TTF)

b-glucosidase activity: p-nitrophenyl-b-D-glucoside (PNG)

Enzyme-cleaved product = p-nitrophenyl (PNP)

USEPA ERT

CHAIN OF CUSTODY RECORD

COC # 3367-0003

REAC, Edison, NJ Contact: Jennifer Royce (732) 321-4200 WO#: 03347-143-001-8888-01 EPA Contract 68-C4-0022

Project Name: Naples Truck Stop Location: Naples, UT

Site Phone:

Page No.: 1 of /

Cooler #:8722 Lab: Oregan State

Contact: Joann Whalen

LAB #	Tag	Sample #	Location	Matrix	Collected	Container/Preservative	Analysis Requested	MS MSD	Comments
	G	3367-001	Location 1	Sall	11/2/98	32 oz glase/4 C	Microbiology	+	
	G	3367-002	Location 2	Soli	11/2/98	32 oz glass/4 C	Microbiology		
	G	3367-003	Location 3	Soli	11/2/98	32 oz glass/4 C	Microbiology		
	G .	3367-004	Location 4	Soil	11/2/98	32 oz glass/4 C	Microbiology	j j	
	G	3387-005	Location 5	Sall	11/2/98	32 oz glass/4 C	Microbiology	+	
	G	3367-006	Location 8	Soll	11/2/98	32 oz glase/4 C	Microbiology		
	G	3387-007	FILE	Soli	11/2/98	32 oz glase/4 C	Microbiology	-	
	<u>.</u>	<u> </u>		-		Annual control former species product product graphs		+	
		-		·					
	<u> </u>					and the same when the same when			
						manada manadas dalamba manada panaga pipanan mandaba			
							+		
	+ ! !		The same was the same was		+				
			The second secon					-	
								-	
٠						MANAGE CHARGE STATEMENT ST			
			+					+	
									·
			 		1 !				
anic Carpo lucosidase	Nitrogen on, Disolvi	ed Organic Nitroger	robial Biomass Carbon, Microi n, Ammonia-nitrogen, Nitrate-n	olai Biomass Nitroge itrogen, CO2 respira	n, Dissolved Itlon, Soll Enz	REFERENCE COC:			
17	. <u> </u>								
18/Reasor		Relinquished B	<u> </u>	By Date	Time R	sma/Reason Relinc	uished By Date Receive	à Bỹ 🖳 🗔	Date Time
/Anc	11 < î >	Jennife &	nua 11/2/00			!		·	

APPENDIX D
Field Documentation
Naples Truck Stop Site
Final Report
April 1999

	CONTENTS			12/98				No. or the second
PAGE NO.	REFERENCE	DATE	-				a cu	
				4	bc 2			
			-	Trees	plant	ert r	DW5 0	د ر •
								ر المرا
					-		a'	bb lc

			e ee ee oo oo oo oo	mddu	row	zrc	tree to the	
				Ther) 31	Arec	of del	Lh.
			· · · · · · · · · · · · · · · · · · ·	then	ties	next	to the	<u>:</u>
<u> </u>			A111 - 11					
			- ·· ·· ··	7 0 0	00			
			7 ((-0)	- 9		7	·
			5/000	1000		0630)	****
			·M	84 40	E From &	2 mpli 3	due to e	JG 5
			301	e from E	ib samd	n. 4)	IINUS	ur.E
			Emclay &					***********
			4	did	not to	ike 6	th Sample	
			And or the contract was always to	unde	Ground	1065	ruction	
			****					-6
						auger	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

	Loc	ø	aug	C. 1	 		1.00	4	augal	e a 3
(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	<i>↔</i>	@ ?			 •) , d	0 0) o (, 0 0 3 3 7	• • • • • • • • • • • • • • • • • • •
	8'		-					2 storing	Shud	
	<i>L</i> oc	3			 		Loc	\$		
	pst			N D	 ھ _	c	, _O		• 0	
رني المراج	9 0	5 c	, , ,	9	 24		. 2 .	7	0 \	
. ''h;	610				 Tu:	Hay co				
						Andrew Constitution of the				

